Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

    • Free courses
    • JEE Main 2024
    • JEE Main 2024 Live Paper Discussion
    • JEE Main Rank Predictor 2024
    • JEE Main College Predictor 2024
    • Stream Predictor
    • JEE Main 2024 Free Mock Test
    • Study Materials
    • Notifications
    • JEE Advanced Syllabus
    • JEE Books
    • JEE Main Question Paper
    • JEE Coaching
    • Downloads
    • JEE Notes & Lectures
    • JEE Daily Videos
    • Difference Between
    • Full Forms
    • Important Formulas
    • Exam Tips
JEE Main 2026 Preparation: Question Papers, Solutions, Mock Tests & Strategy Unacademy » JEE Study Material » Physics » Hooke’s Law

Hooke’s Law

In this article we will learn about Hooke’s law, Formula of hooke’s law, Explanation of hooke’s law, Hooke’s law applications and Hooke’s law disadvantages.

Table of Content
  •  

Hooke’s law is a law of elasticity developed by the English scientist Robert Hooke in 1660, which states that for relatively mild deformations of an object, the displacement or amount of a deformation is precisely proportional to the deforming force or load. When the load is removed under these conditions, the item returns to its original shape and dimensions. The fact that minor displacements of their constituent molecules, atoms, or ions from normal locations are proportional to the force that generates the displacement explains the elastic behaviour of solids according to Hooke’s equation.

Stretching, compressing, squeezing, bending, and twisting can all be used to distort a solid. According to Hooke’s law, a metal wire exhibits elastic behaviour when stretched by an applied force since the modest increase in its length doubles each time the force is doubled. Hooke’s law asserts that the applied force F equals the displacement or change in length x times a constant k, or F = -kx. The value of k is determined not only by the type of elastic material but also by its dimensions and shape.

Formula of Hooke’s Law

As long as the load does not exceed the material’s elastic limit, many materials will obey this law of elasticity. Linear-elastic or “Hookean” materials are those for which Hooke’s law is a useful approximation. Hooke’s law states that stress is proportional to strain in a direct relation.

Hooke’s law is expressed mathematically as:

F=−kx

Here,

x is the displacement of the spring’s end from its equilibrium position 

F is the restoring force exerted by the spring on that end 

k is a constant called the rate or spring constant 

Explanation of Hooke’s Law

Hooke’s Law is a physics principle that asserts that the force required to expand or compress a spring is proportionate to the distance travelled. The rule is named after Robert Hooke, a British physicist who attempted to demonstrate the relationship between the forces applied to a spring and its elasticity in the 17th century. In 1660, he formulated the law as a Latin anagram, and in 1678, he published the answer as ut tensio, sic vis (which means “as the extension, so the force” or “the extension is proportional to the force”).

Hooke’s law is the first example of a traditional explanation of elasticity, which is the quality of an item or material that allows it to return to its original shape after being distorted. The ability to return to its original shape after being distorted is known as a “restoring force.” This restoring force is often proportional to the amount of “stretch” experienced, according to Hooke’s Law.

 

Hooke’s Law governs the behaviour of springs as well as many other circumstances in which an elastic body is distorted. These can include anything from blowing up a balloon and pulling on a rubber band to calculating the amount of wind force required to bend and wobble a tall building.

Hooke’s Law is compatible with Newton’s rules of static equilibrium in its most general form. They make it feasible to deduce the relationship between strain and stress for complicated items based on the intrinsic materials of the properties they are formed of when they are used together. When a homogeneous rod with uniform cross section is stretched, it behaves like a simple spring, with a stiffness (k) that is exactly proportional to its cross-section area and inversely proportional to its length.

Another fascinating aspect of Hooke’s law is that it perfectly illustrates the first Law of thermodynamics. Any spring almost flawlessly conserves the energy provided to it when compressed or expanded. Natural friction is the only source of energy loss. Furthermore, Hooke’s law includes a wave-like periodic function. In a periodic function, a spring released from a distorted state will return to its original position with proportional force. The motion’s wavelength and frequency can also be measured and estimated.

Hooke’s Law Applications

The creation of a balance wheel, which permitted the development of mechanical clocks, portable timepieces, spring scales, and manometers, was made possible by Hooke’s law. Furthermore, Hooke’s law is attributed to various branches of science and engineering because it is a near approximation of all solid bodies (as long as the forces of deformation are small enough). These fields include seismology, molecular mechanics, and acoustics.

Hooke’s Law Disadvantages

Hooke’s Law, like much classical mechanics, can only be applied to a limited set of circumstances. Because no material can be crushed or stretched past a particular minimum size (or stretched beyond a maximum size) without causing permanent distortion or change of state, it only applies to a certain amount of force or deformation. Many materials, in fact, deviate noticeably from Hooke’s law long before they reach their elastic limits.

Conclusion

Even if the material stays elastic and returns to its original shape and size after the force is removed, the deformation of the elastic material is often more than expected on the basis of Hooke’s law at relatively large values of applied force. Hooke’s law describes the elastic properties of materials only in the region where force and displacement are proportional. F = -kx is how Hooke’s law is written.  F no longer refers to the applied force, but to the equal and oppositely directed restoring force that allows elastic materials to return to their original dimensions.

Hooke’s law can alternatively be stated as a stress-strain relationship. Stress is the force that occurs as a result of an externally applied force on unit areas within a material. The relative deformation caused by stress is known as strain. Stress is related to strain for relatively modest stresses.

 
faq

Frequently asked questions

Get answers to the most common queries related to the JEE Examination Preparation.

Why is the value of k negative in Hooke’s Law?

Ans. The spring constant, k, is denoted as the negative one in Hooke’s equation. Because of t...Read full

What is Hooke’s Law?

Ans. The stress-strain connection of some materials is the subject of Hooke’s Law, which was ...Read full

What are the advantages of Hooke’s Law?

Ans. Hooke’s law had numerous practical uses, including the development of a balancing wheel, whi...Read full

What are the disadvantages of Hooke’s Law?

Ans. Hooke’s Law, like much classical mechanics, can only be applied to a limited set of circ...Read full

Why do we need Hooke’s Law?

Ans. Hooke’s Law is one of the constitutional equations that describes the relationship betw...Read full

Ans. The spring constant, k, is denoted as the negative one in Hooke’s equation. Because of the force’s direction, the negative sign is used. When you remove the applied force in a spring, the return force always travels in the opposite direction.

Ans. The stress-strain connection of some materials is the subject of Hooke’s Law, which was developed by British scientist Robert Hooke. A linear region is observed when the force required to stretch a material is proportionate to the extension of the material, and Hooke’s Law is based on this. Stress and strain vary depending on the situation, although they are always proportional to each other for certain deformations. Hooke’s Law is all about this.

Ans. Hooke’s law had numerous practical uses, including the development of a balancing wheel, which enabled the development of mechanical clocks, portable timepieces, spring scales, and manometers (aka. the pressure gauge). Furthermore, because it is a near approximation of all solid bodies (as long as the forces of deformation are minimal enough), Hooke’s law is credited to several disciplines of science and engineering. Seismology, molecular mechanics, and acoustics are among these sciences.

Ans. Hooke’s Law, like much classical mechanics, can only be applied to a limited set of circumstances. Because no material can be crushed or stretched past a particular minimum size (or stretched beyond a maximum size) without causing permanent distortion or change of state, it only applies to a certain amount of force or deformation. Many materials, in fact, deviate noticeably from Hooke’s law long before they reach their elastic limits.

Ans. Hooke’s Law is one of the constitutional equations that describes the relationship between stress and strain. It helps you to figure out how much weight you’re carrying. Like any other constitutional equation, it was discovered through experiments. It claims that stress is proportional to strain. Hooke’s Law has become a cornerstone of material science, making it essential for engineering and construction. Its simplicity allowed for the development of a slew of mathematical methods that are at the heart of elasticity theory.

Crack IIT JEE with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the JEE Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Allotment of Examination Centre
JEE Advanced Eligibility Criteria
JEE Advanced Exam Dates
JEE Advanced Exam Pattern 2023
JEE Advanced Syllabus
JEE Application Fee
JEE Application Process
JEE Eligibility Criteria 2023
JEE Exam Language and Centres
JEE Exam Pattern – Check JEE Paper Pattern 2024
JEE Examination Scheme
JEE Main 2024 Admit Card (OUT) – Steps to Download Session 1 Hall Ticket
JEE Main Application Form
JEE Main Eligibility Criteria 2024
JEE Main Exam Dates
JEE Main Exam Pattern
JEE Main Highlights
JEE Main Paper Analysis
JEE Main Question Paper with Solutions and Answer Keys
JEE Main Result 2022 (Out)
JEE Main Revised Dates
JEE Marking Scheme
JEE Preparation Books 2024 – JEE Best Books (Mains and Advanced)
Online Applications for JEE (Main)-2022 Session 2
Reserved Seats
See all

Related articles

Learn more topics related to Physics
Zinc-Carbon Cell

The battery you use every day in your TV remote or torch is made up of cells and is also known as a zinc-carbon cell. Read on to know more.

ZEROTH LAW OF THERMODYNAMICS

Read about the Zeroth law of thermodynamics. Learn about the zeroth law definitions and their examples.

Zener Diode As A Voltage Regulator

Understand the concepts of Zener diodes. Also, learn about the efficiency and limitations of Zener Diode as a Voltage Regulator.

Zener diode as a voltage regulator

zener diode is a very versatile semiconductor that is used for a variety of industrial processes and allows the flow of current in both directions.It can be used as a voltage regulator.

See all
Access more than

10,505+ courses for IIT JEE

Get subscription

Trending Topics

  • JEE Main 2024
  • JEE Main Rank Predictor 2024
  • JEE Main Mock Test 2024
  • JEE Main 2024 Admit Card
  • JEE Advanced Syllabus
  • JEE Preparation Books
  • JEE Notes
  • JEE Advanced Toppers
  • JEE Advanced 2022 Question Paper
  • JEE Advanced 2022 Answer Key
  • JEE Main Question Paper
  • JEE Main Answer key 2022
  • JEE Main Paper Analysis 2022
  • JEE Main Result
  • JEE Exam Pattern
  • JEE Main Eligibility
  • JEE College predictor
combat_iitjee

Related links

  • JEE Study Materials
  • CNG Full Form
  • Dimensional Formula of Pressure
  • Reimer Tiemann Reaction
  • Vector Triple Product
  • Swarts Reaction
  • Focal length of Convex Lens
  • Root mean square velocities
  • Fehling’s solution
testseries_iitjee
Subscribe Now
. document.querySelector('.targetTopBtn').onClick = topFunction; function topFunction() { window.scrollTo({ top: 0, behavior: 'smooth' }) }
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2026 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY