NEET UG » NEET Notifications 2024 » NEET Syllabus 2023

NEET Syllabus 2023

Get the complete guide for NTA NEET Syllabus 2023. If aspiring students are preparing for NEET 2023, then all you need to download pdf for chemistry , biology and physics syllabus at Unacademy

Download NEET Physics Syllabus PDF Download
Download NEET Chemistry Syllabus PDF Download
Download NEET Biology Syllabus PDF Download
The NEET (UG) or National Eligibility Cum Entrance Test (UG) is a medical entrance exam held by the National Testing Agency (NTA) every year for admission to undergraduate courses such as MBBS, BDS, BUMS, BAMS, BSMS, and BHMS across the country. Candidates preparing for NEET (UG) should review the exam syllabus given below:

Class 11

NEET Physics Syllabus

  1. Physical-  World And Measurement.
  2. Kinematics.
  3. Laws Of Motion .
  4. Work, Energy And Power.
  5. Motion Of System Of Particles And Rigid Body.
  6. Gravitation.
  7. Properties Of Bulk Matter.
  8. Thermodynamics .
  9. Behavior Of Perfect Gas And Kinetic Theory.
  10. Oscillations And Waves.

NEET Chemistry Syllabus

  1. Some Basic Concepts Of Chemistry
  2. Structure Of Atom
  3. Classification Of Elements And Periodicity In Properties
  4. Chemical Bonding And Molecular Structure
  5. States Of Matter: Gases and Liquids
  6. Thermodynamics
  7. Equilibrium
  8. Redox Reactions
  9. Hydrogen
  10. S-Block Element (Alkali And Alkaline Earth Metals)
  11. Some p-Block Elements
  12. Organic Chemistry- Some Basic Principles And Techniques
  13. Hydrocarbons
  14. Environmental Chemistry

NEET Biology Syllabus

  1. Diversity In Living World
  2. Structural Organization In Animals And Plants
  3. Cell Structure And Function
  4. Plant Physiology
  5. Human Physiology

Class 12

NEET Physics Syllabus

  1. Electrostatics
  2. Current Electricity
  3. Magnetic Effects Of Current And Magnetism
  4. Electromagnetic Induction And Alternating Currents
  5. Electromagnetic Waves
  6. Optics
  7. Dual Nature Of Matter And Radiation
  8. Atoms And Nuclei
  9. Electronic Devices

NEET Chemistry Syllabus

  1. Solid State
  2. Solutions
  3. Electrochemistry
  4. Chemical Kinetics
  5. Surface Chemistry
  6. General Principles And Processes Of Isolation Of Elements
  7. p- Block Elements
  8. d and f Block Elements
  9. Coordination Compounds
  10. Haloalkanes and Haloarenes
  11. Alcohols, Phenols And Ethers
  12. Aldehydes, Ketones And Carboxylic Acids
  13. Organic Compounds Containing Nitrogen
  14. Biomolecules
  15. Polymers
  16. Chemistry In Everyday Life

NEET Biology Syllabus

  1. Reproduction
  2. Genetics And Evolution
  3. Biology And Human Welfare
  4. Biotechnology and Its Applications
  5. Ecology And Environment

Detailed Syllabus of Class 11th

Physics

UNIT I: Physical World and Measurement

  • Physics: Scope and excitement; nature of physical laws; Physics, technology, and society
  • Dimensions of physical quantities, dimensional analysis, and its applications
  • Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass, and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures

UNIT II: Kinematics

  • Unit vectors. Resolution of a vector in a plane-rectangular component
  • A frame of reference, Motion in a straight line; Position-time graph, speed, and velocity. Uniform and non-uniform motion, average speed, and instantaneous velocity. Uniformly accelerated motion, velocity-time, and position-time graphs, for uniformly accelerated motion (graphical treatment)
  • Scalar and Vector products of Vectors. Motion in a plane. Cases of uniform velocity and uniform acceleration- projectile motion. Uniform circular motion
  • Elementary concepts of differentiation and integration for describing motion. Scalar and vector quantities: Position and displacement vectors, general vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity

UNIT III: Laws of Motion

  • Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction, lubrication
  • Intuitive concept of force. Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion. Law of conservation of linear momentum and its applications
  • Dynamics of uniform circular motion. Centripetal force, examples of circular motion (vehicle on level circular road, vehicle on banked road)

UNIT IV: Work, Energy, and Power

  • Notion of potential energy, the potential energy of a spring, conservative forces; conservation of mechanical energy (kinetic and potential energies); nonconservative forces; motion in a vertical circle, elastic and inelastic collisions in one and two dimensions
  • Work done by a constant force and variable force; kinetic energy, work-energy theorem, power

UNIT V: Motion of System of Particles and Rigid Body

  • Centre of mass of a two-particle system, momentum conservation, and centre of mass motion. Centre of mass of a rigid body; centre of mass of uniform rod
  • Moment of a force, torque, angular momentum, conservation of angular momentum with some examples
  • Equilibrium of rigid bodies, rigid body rotation, and equation of rotational motion, comparison of linear and rotational motions; the moment of inertia, the radius of gyration. Values of M.I. for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications

UNIT VI: Gravitation

  • Gravitational potential energy; gravitational potential. Escape velocity, orbital velocity of a satellite. Geostationary satellites
  • Kepler’s laws of planetary motion. The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth

UNIT VII: Properties of Bulk Matter

  • Viscosity, Stokes’ law, terminal velocity, Reynold’s number, streamline and turbulent flow. Critical velocity, Bernoulli’s theorem and its applications
  • Elastic behavior, Stress-strain relationship. Hooke’s law, Young’s modulus, bulk modulus, shear, modulus of rigidity, poisson’s ratio; elastic energy
  • Heat, temperature, thermal expansion; thermal expansion of solids, liquids, and gases. Anomalous expansion. Specific heat capacity: Cp, Cv- calorimetry; change of state – latent heat
  • Newton’s law of cooling and Stefan’s law
  • Surface energy and surface tension, angle of contact, excess of pressure, application of surface tension ideas to drops, bubbles and capillary rise
  • Heat transfer- conduction and thermal conductivity, convection and radiation. Qualitative ideas of Black Body Radiation, Wein’s displacement law, and GreenHouse effect

UNIT VIII: Thermodynamics

  • Thermal equilibrium and definition of temperature (zeroth law of Thermodynamics). Heat, work and internal energy. First law of thermodynamics. Isothermal and adiabatic processes
  • Second law of thermodynamics: Reversible and irreversible processes. Heat engines and refrigerators

UNIT IX: Behaviour of Perfect Gas and Kinetic Theory

  • Kinetic theory of gases: Assumptions, concept of pressure. Kinetic energy and temperature; degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path
  • Equation of state of a perfect gas, work done on compressing a gas

UNIT X: Oscillations and Waves

  • Periodic motion-period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (SHM) and its equation; phase; oscillations of a spring-restoring force and force constant; energy in SHM – Kinetic and potential energies; simple pendulum-derivation of expression for its time period; free, forced and damped oscillations (qualitative ideas only), resonance
  • Wave motion. Longitudinal and transverse waves, speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics. Beats. Doppler effect

Chemistry

UNIT I: Some Basic Concepts of Chemistry

  • General Introduction: Importance and scope of chemistry
  • Atomic and molecular masses. Mole concept and molar mass; percentage composition and empirical and molecular formula; chemical reactions, stoichiometry and calculations based on stoichiometry
  • Laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules

UNIT II: Structure of Atom

  • Atomic number, isotopes and isobars. Concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbital, quantum numbers, shapes of s,p and d orbitals, rules for filling electrons in orbitals- Aufbau principle, Pauli exclusion principles and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals

UNIT III: Classification of Elements and Periodicity in Properties

  • Modern periodic law and long form of periodic table, periodic trends in properties of elements atomic radii, ionic radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence

UNIT IV: Chemical Bonding and Molecular Structure

  • Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, valence bond theory, resonance, geometry of molecules, VSEPR theory, concept of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only). Hydrogen bond

UNIT V: States of Matter: Gases and Liquids

  • Liquid State- Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)
  • Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws of elucidating the concept of the molecule, Boyle’s law, Charle’s law, Gay Lussac’s law, Avogadro’s law, ideal behaviour of gases, empirical derivation of gas equation. Avogadro number, ideal gas equation. Kinetic energy and molecular speeds (elementary idea), deviation from ideal behaviour, liquefaction of gases, critical temperature

UNIT VI : Thermodynamics

  • First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of U and H, Hess’s law of constant heat summation, enthalpy of : bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution
  • Introduction of entropy as state function, Second law of thermodynamics, Gibbs energy change for spontaneous and non-spontaneous process, criteria for equilibrium and spontaneity
  • Third law of thermodynamics- Brief introduction

UNIT VII: Equilibrium

  • Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of chemical equilibrium, equilibrium constant, factors affecting equilibrium- Le Chatelier’s principle; ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of polybasic acids, acid strength, concept of pH., Hydrolysis of salts (elementary idea)., buffer solutions, Henderson equation, solubility product, common ion effect (with illustrative examples)

UNIT VIII: Redox Reactions

  • Concept of oxidation and oxidation and reduction, redox reactions oxidation number, balancing redox reactions in terms of loss and gain of electrons and change in oxidation numbers

UNIT IX: Hydrogen

  • Occurrence, isotopes, preparation, properties and uses of hydrogen; hydrides ionic, covalent and interstitial; physical and chemical properties of water, heavy water; hydrogen peroxide-preparation, reactions, uses and structure

UNIT X: s-Block Elements (Alkali and Alkaline earth metals)

  • Group I and group 2 elements
  • General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses
Industrial use of lime and limestone, biological importance of Mg and Ca
  • Preparation and Properties of some important Compounds
  • Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate, biological importance of sodium and potassium
  • Industrial use of lime and limestone, biological importance of Mg and Ca

UNIT XI: Some p-Block Elements

  • General Introduction to p-Block Elements
  • Group 13 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group; Boron, some important compounds: borax, boric acids, boron hydrides. Aluminium: uses, reactions with acids and alkalis
  • General 14 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element. Carbon, allotropic forms, physical and chemical properties: uses of some important compounds: oxides
  • Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and zeolites, their uses

UNIT XII: Organic Chemistry- Some Basic Principles and Techniques

  • General introduction, methods of purification qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds
  • Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyperconjugation
  • Homolytic and heterolytic fission of a covalent bond: free radials, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions

UNIT XIII: Hydrocarbons

  • Alkanes- Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis
  • Alkynes- Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of- hydrogen, halogens, hydrogen halides and water
  • Alkanes- Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation: chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition
  • Aromatic hydrocarbons- Introduction, IUPAC nomenclature; Benzene; resonance, aromaticity; chemical properties: mechanism of electrophilic substitution- Nitration sulphonation, halogenation, Friedel Craft’s alkylation and acylation; directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity

UNIT XIV: Environmental Chemistry

  • Environmental pollution: Air, water and soil pollution, chemical reactions in atmosphere, smogs, major atmospheric pollutants; acid rain ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming-pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution

Biology

UNIT I: Diversity in Living World

  • What is living? ; Biodiversity; Need for classification; Three domains of life; Taxonomy & Systematics; Concept of species and taxonomic hierarchy; Binomial nomenclature; Tools for study of Taxonomy – Museums, Zoos, Herbaria, Botanical gardens
  • Salient features and classification of plants into major groups- Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms (three to five salient and distinguishing features and at least two examples of each category); Angiosperms classification up to class, characteristic features and examples)
  • Salient features and classification of animals- nonchordate up to phyla level and chordate up to classes level (three to five salient features and at least two examples)
  • Five kingdom classification; salient features and classification of Monera; Protista and Fungi into major groups; Lichens; Viruses and Viroids

UNIT II: Structural Organisation in Animals and Plants

  • Animal tissues; Morphology, anatomy and functions of different systems (digestive, circulatory, respiratory, nervous and reproductive) of an insect (cockroach). (Brief account only)
  • Morphology and modifications; Tissues; Anatomy and functions of different parts of flowering plants: Root, stem, leaf, inflorescence- cymose and racemose, flower, fruit and seed (To be dealt along with the relevant practical of the Practical Syllabus)

UNIT III: Cell Structure and Function

  • Chemical constituents of living cells: Biomolecules-structure and function of proteins, carbohydrates, lipids, nucleic acids; Enzymes-types, properties, enzyme action
  • Cell theory and cell as the basic unit of life; Structure of prokaryotic and eukaryotic cell; Plant cell and animal cell; Cell envelope, cell membrane, cell wall; Cell organelles-structure and function; Endomembrane system-endoplasmic reticulum, Golgi bodies, lysosomes, vacuoles; mitochondria, ribosomes, plastids, micro bodies; Cytoskeleton, cilia, flagella, centrioles (ultra structure and function); Nucleus-nuclear membrane, chromatin, nucleolus
  • B Cell division: Cell cycle, mitosis, meiosis and their significance

UNIT IV: Plant Physiology

  • Transport in plants: Movement of water, gases and nutrients; Cell to cell transport-Diffusion, facilitated diffusion, active transport; Plant – water relations – Imbibition, water potential, osmosis, plasmolysis; Long distance transport of water – Absorption, apoplast, symplast, transpiration pull, root pressure and guttation; Transpiration- Opening and closing of stomata; Uptake and translocation of mineral nutrients- Transport of food, phloem transport, Mass flow hypothesis; Diffusion of gases (brief mention)
  • Plant growth and development: Seed germination; Phases of Plant growth and plant growth rate; Conditions of growth; Differentiation, dedifferentiation and redifferentiation; Sequence of developmental process in a plant cell; Growth regulators-auxin, gibberellin, cytokinin, ethylene, ABA; Seed dormancy; Vernalisation; Photoperiodism
  • Photosynthesis: Photosynthesis as a means of Autotrophic nutrition; Site of photosynthesis take place; pigments involved in Photosynthesis (Elementary idea); Photochemical and biosynthetic phases of photosynthesis; Cyclic and non cyclic and photophosphorylation; Chemiosmotic hypothesis; Photorespiration C3 and C4 pathways; Factors affecting photosynthesis
  • Respiration: Exchange gases; Cellular respiration-glycolysis, fermentation (anaerobic), TCA cycle and electron transport system (aerobic); Energy relations- Number of ATP molecules generated; Amphibolic pathways; Respiratory quotient
  • Mineral nutrition: Essential minerals, macro and micronutrients and their role; Deficiency symptoms; Mineral toxicity; Elementary idea of Hydroponics as a method to study mineral nutrition; Nitrogen metabolism-Nitrogen cycle, biological nitrogen fixation

UNIT V: Human Physiology

  • Breathing and Respiration: Respiratory organs in animals (recall only); Respiratory system in humans; Mechanism of breathing and its regulation in humans- Exchange of gases, transport of gases and regulation of respiration Respiratory volumes; Disorders related to respiration- Asthma, Emphysema, Occupational respiratory disorders
  • Digestion and absorption; Alimentary canal and digestive glands; Role of digestive enzymes and gastrointestinal hormones; Peristalsis, digestion, absorption and assimilation of proteins, carbohydrates and fats; Caloric value of proteins, carbohydrates and fats; Egestion; Nutritional and digestive disorders – PEM, indigestion, constipation, vomiting, jaundice, diarrhea
  • Excretory products and their elimination: Modes of excretion- Ammonotelism, ureotelism, uricotelism; Human excretory system- structure and function; Urine formation, Osmoregulation; Regulation of kidney function-Renin-angiotensin, Atrial Natriuretic Factor, ADH and Diabetes insipidus; Role of other organs in excretion; Disorders; Uraemia, Renal failure, Renal calculi, Nephritis; Dialysis and artificial kidney
  • Locomotion and Movement: Types of movement- ciliary, flagellar, muscular; Skeletal muscle-contractile proteins and muscle contraction; Skeletal system and its functions (To be dealt with the relevant practical of Practical syllabus); Joints; Disorders of muscular and skeletal system- Myasthenia gravis, Tetany, Muscular dystrophy, Arthritis, Osteoporosis, Gout
  • Chemical coordination and regulation: Endocrine glands and hormones; Human endocrine system- Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Adrenal, Pancreas, Gonads; Mechanism of hormone action (Elementary Idea); Role of hormones as messengers and regulators, Hypo-and hyperactivity and related disorders (Common disorders e.g. Dwarfism, Acromegaly, Cretinism, goiter, exophthalmic goiter, diabetes, Addison’s disease)
  • Body fluids and circulation: Composition of blood, blood groups, coagulation of blood; Composition of lymph and its function; Human circulatory system- Structure of human heart and blood vessels; Cardiac cycle, cardiac output, ECG, Double circulation; Regulation of cardiac activity; Disorders of circulatory system- Hypertension, Coronary artery disease, Angina pectoris, Heart failure
  • Neural control and coordination: Neuron and nerves; Nervous system in humans central nervous system, peripheral nervous system and visceral nervous system; Generation and conduction of nerve impulse; Reflex action; Sense organs; Elementary structure and function of eye and ear
(Imp: Diseases and disorders mentioned above to be dealt with briefly.)

Detailed Syllabus of Class 12th

Physics

UNIT I: Electrostatics

  • Electric charges and their conservation. Coulomb’s law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution
  • Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside)
  • Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor, Van de Graaff generator
  • Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in a uniform electric field
  • Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges: equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipoles in an electrostatic field

UNIT II: Current Electricity

  • Electric current, the flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics (linear and nonlinear), electrical energy and power, electrical resistivity, and conductivity
  • Kirchhoff’s laws and simple applications. Wheatstone bridge, metre bridge
  • Potentiometer-principle and applications to measure potential difference, and for comparing emf of two cells; measurement of internal resistance of a cell
  • Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel
  • Carbon resistors, color code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance

UNIT III: Magnetic Effects of Current and Magnetism

  • Concept of magnetic field, Oersted’s experiment. Biot-Savart law and its application to the current carrying circular loop
  • Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in a magnetic field; moving coil galvanometer- its current sensitivity and conversion to ammeter and voltmeter
  • Ampere’s law and its applications to infinitely long straight wire, straight and toroidal solenoids. Force on a moving charge in uniform magnetic and electric fields. Cyclotron
  • Electromagnetic and factors affecting their strengths. Permanent magnets
  • Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements
  • Para-, dia-and ferro-magnetic substances, with examples

UNIT IV: Electromagnetic Induction and Alternating Currents

  • Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance
  • AC generator and transformer
  • Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattles current

UNIT V: Electromagnetic Waves

  • Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves
  • Need for displacement current
  • Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses

UNIT VI: Optics

  • Scattering of light- blue colour of the sky and reddish appearance of the sun at sunrise and sunset
  • Optical instruments: Human eye, image formation and accommodation, correction of eye defects (myopia and hypermetropia) using lenses
  • Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens-maker’s formula. Magnification, power of a lens, combination of thin lenses in contact combination of a lens and a mirror. Refraction and dispersion of light through a prism
  • Proof of laws of reflection and refraction using Huygens’ principle
  • Interference, Young’s double hole experiment and expression for fringe width, coherent sources and sustained interference of light
  • Diffraction due to a single slit, width of central maximum
  • Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers
  • Wave optics: Wavefront and Huygens’ principle, reflection and refraction of plane waves at a plane surface using wavefronts
  • Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids

UNIT VII: Dual Nature of Matter and Radiation

  • Matter waves- wave nature of particles, de Broglie relation. Davisson-Germer experiment (experimental details should be omitted; only conclusions should be explained)
  • Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation- particle nature of light

UNIT VIII: Atoms and Nuclei

  • Radioactivity- alpha, beta and gamma particles/ rays and their properties decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion
  • Alpha- particle scattering experiments; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones

UNIT IX: Electronic Devices

  • Energy bands in solids (qualitative ideas only), conductors, insulators and semiconductors; semiconductor diode- I-V characteristics in forward and reverse bias, diode as a rectifier; I-V characteristics of LED, diode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch

Chemistry

UNIT I: Solid State

  • Classification of solids based on different binding forces; molecular, ionic covalent and metallic solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties, Band theory of metals, conductors, semiconductors and insulators

UNIT II: Solutions

  • Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties- relative lowering of vapour pressure, Raoult’s law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties abnormal molecular mass. Van Hoff factor

UNIT III: Electrochemistry

  • Redox reactions, conductance in electrolytic solutions, specific and molar conductivity variation of conductivity with concentration, kohlrausch’s Law, electrolysis and Laws of electrolysis (elementary idea), dry cell- electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Relation between Gibbs energy change and EMF of a cell, fuel cells; corrosion.

UNIT IV: Chemical Kinetics

  • Rate of a reaction (average and instantaneous), factors affecting rates of reaction; concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.

UNIT V: Surface Chemistry

  • Adsorption-physisorption and chemisorption; factors affecting adsorption of gases on solids, catalysis homogeneous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions- types of emulsions.

UNIT VI: General Principles and Processes of Isolation of Elements

  • Principles and methods of extraction- concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

UNIT VII: p- Block Elements

  • Group 15 elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorus- allotropic forms; compounds of phosphorus: preparation and properties of phosphine, halides (PCI3, PCI5) and oxoacids (elementary idea only).
  • Group 16 elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; classification of oxides; ozone. Sulphur – allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only).
  • Group 17 elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens: preparation, properties and uses of chlorine and hydrochloric acid, interhalogen compounds oxoacids of halogens (structures only).
  • Group 18 elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

UNIT VIII: d and f Block Elements

  • General introduction, electronic configuration, characteristics of transition metals, general trends in properties of the first row transition metals- metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation. Preparation and properties of K2Cr2O7 and KMnO4.
  • Lanthanoids- electronic configuration, oxidation states, chemical reactivity, and lanthanoid contraction and its consequences.
  • Actinoids: Electronic configuration, oxidation states and comparison with lanthanoids.

UNIT IX: Coordination Compounds

  • Coordination compounds: Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, isomerism (structural and stereo) bonding, Werner’s theory VBT, CFT; importance of coordination compounds (in qualitative analysis, biological systems).

UNIT X: Haloalkanes and Haloarenes

  • Haloalkanes: Nomenclature, nature of C –X bond, physical and chemical properties, mechanism of substitution reactions. Optical rotation.
  • Uses and environmental effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.
  • Haloarenes: Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only).

UNIT XI: Alcohols, Phenols and Ethers

  • Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols.
  • Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses with special reference to methanol and ethanol.
  • Ethers: Nomenclature, methods of preparation, physical and chemical properties , uses.

UNIT XII: Aldehydes, Ketones and Carboxylic Acids

  • Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.
  • Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties; and mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses.

UNIT XIII: Organic Compounds Containing Nitrogen

  • Cyanides and Isocyanides- will be mentioned at relevant places.
  • Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary secondary and tertiary amines.
  • Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

UNIT XIV: Biomolecules

  • Proteins- Elementary idea of – amino acids, peptide bond, polypeptides, proteins, primary structure, secondary structure, tertiary structure and quaternary structure (qualitative idea only), denaturation of proteins; enzymes.
  • Carbohydrates- Classification (aldoses and ketoses), monosaccharide (glucose and fructose), D.L. configuration, oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen): importance.
  • Hormones- Elementary idea (excluding structure).
  • Nucleic Acids: DNA and RNA
  • Vitamins- Classification and function.

UNIT XV: Polymers

  • Classification- Natural and synthetic, methods of polymerization (addition and condensation), copolymerization. Some important polymers: natural and synthetic like polyesters, bakelite; rubber, Biodegradable and non-biodegradable polymers.

UNIT XVI: Chemistry in Everyday Life

  • Chemicals in food- preservatives, artificial sweetening agents, elementary ideas of antioxidants.
  • Chemicals in medicines- analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines.
  • Cleansing agents- soaps and detergents, cleansing action

Biology

UNIT I: Reproduction

  • Reproduction in organisms: Reproduction, a characteristic feature of all organisms for continuation of species; Modes of reproduction – Asexual and sexual; Asexual reproduction; Modes-Binary fission, sporulation, budding, gemmule, fragmentation; vegetative propagation in plants.
  • Human Reproduction: Male and female reproductive systems; Microscopic anatomy of testis and ovary; Gametogenesis-spermatogenesis & oogenesis; Menstrual cycle; Fertilisation, embryo development upto blastocyst formation, implantation; Pregnancy and placenta formation (Elementary idea); Parturition (Elementary idea); Lactation (Elementary idea).
  • Sexual reproduction in flowering plants: Flower structure; Development of male and female gametophytes; Pollination-types, agencies and examples; Outbreeding devices; Pollen-Pistil interaction; Double fertilization; Post fertilization events- Development of endosperm and embryo, Development of seed and formation of fruit; Special modes-apomixis, parthenocarpy, polyembryony; Significance of seed and fruit formation.
  • Reproductive health: Need for reproductive health and prevention of sexually transmitted diseases (STD); Birth control-Need and Methods, Contraception and Medical Termination of Pregnancy (MTP); Amniocentesis; Infertility and assisted reproductive technologies – IVF, ZIFT, GIFT (Elementary idea for general awareness).

UNIT II: Genetics and Evolution

  • Molecular basis of Inheritance: Search for genetic material and DNA as genetic material; Structure of DNA and RNA; DNA packaging; DNA replication; Central dogma; Transcription, genetic code, translation; Gene expression and regulation- Lac Operon; Genome and human genome project; DNA fingerprinting.
  • Heredity and variation: Mendelian Inheritance; Deviations from Mendelism- Incomplete dominance, Co-dominance, Multiple alleles and Inheritance of blood groups, Pleiotropy; Elementary idea of polygenic inheritance; Chromosome theory of inheritance; Chromosomes and genes; Sex determination-In humans, birds, honey bee; Linkage and crossing over; Sex linked inheritance- Haemophilia, Colour blindness; Mendelian disorders in humans-Thalassemia; Chromosomal disorders in humans; Down’s syndrome, Turner’s and Klinefelter’s syndromes.
  • Evolution: Origin of life; Biological evolution and evidences for biological evolution from Paleontology, comparative anatomy, embryology and molecular evidence); Darwin’s contribution, Modern Synthetic theory of Evolution; Mechanism of evolution-Variation (Mutation and Recombination) and Natural Selection with examples, types of natural selection; Gene flow and genetic drift; Hardy-Weinberg’s principle; Adaptive Radiation; Human evolution.

UNIT III: Biology and Human Welfare

  • Improvement in food production; Plant breeding, tissue culture, single cell protein, Biofortification; Apiculture and Animal husbandry.
  • Health and Disease; Pathogens; parasites causing human diseases (Malaria, Filariasis, Ascariasis. Typhoid, Pneumonia, common cold, amoebiasis, ring worm); Basic concepts of immunology-vaccines; Cancer, HIV and AIDS; Adolescence, drug and alcohol abuse.
  • Microbes in human welfare: In household food processing, industrial production, sewage treatment, energy generation and as biocontrol agents and biofertilizers.

UNIT IV: Biotechnology and Its Applications

  • Application of Biotechnology in health and agriculture: Human insulin and vaccine production, gene therapy; Genetically modified organisms-Bt crops; Transgenic Animals; Biosafety issues-Biopiracy and patents.
  • Principles and process of Biotechnology: Genetic engineering (Recombinant DNA technology).

UNIT V: Ecology and environment

  • Ecosystem: Patterns, components; productivity and decomposition; Energy flow; Pyramids of number, biomass, energy; Nutrient cycling (carbon and phosphorous); Ecological succession; Ecological ServicesCarbon fixation, pollination, oxygen release.
  • Organisms and environment: Habitat and niche; Population and ecological adaptations; Population interactions-mutualism, competition, predation, parasitism; Population attributes-growth, birth rate and death rate, age distribution.
  • Environmental issues: Air pollution and its control; Water pollution and its control; Agrochemicals and their effects; Solid waste management; Radioactive waste management; Greenhouse effect and global warning; Ozone depletion; Deforestation; Any three case studies as success stories addressing environmental issues.
  • Biodiversity and its conservation: Concept of Biodiversity; Patterns of Biodiversity; Importance of Biodiversity; Loss of Biodiversity; Biodiversity conservation; Hotspots, endangered organisms, extinction, Red Data Book, biosphere reserves, National parks and sanctuaries.

Crack NEET UG with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators


Access more than

9,257+ courses for NEET UG

Get the learning app

Download lessons and learn anytime, anywhere with the Unacademy app
faq

Frequently Asked Questions

Get NEET UG exam preparation tips and study plan to crack NEET 2023.

In how many sections is the NEET-UG examination syllabus divided?

The NEET UG Examination is divided into four sections. These sections are- ...Read full

How is the number of questions distributed between the different sections of the syllabus?

The distribution of the total number of questions between the different sections of the NEET-UG syllabus is as follo...Read full

Which autonomous body provides the syllabus of NEET each year?

The National Testing Agency conducts the National Eligibility cum Entrance Test (UG) for the selection of several me...Read full

Name some of the legit books which would help with the coverage of the NEET Syllabus.

Some of the good material for the coverage of the NEET Syllabus are- NC...Read full

Where to download the syllabus of NEET Examinations?

The syllabus of NEET-UG Examinations can be easily downloaded and viewed from the National Testing Agency’s offici...Read full