Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

  • CA Foundation Syllabus
  • CA Foundation Question Papers
  • CA Foundation Books
  • Video Lectures
  • CA Foundation Study Material
  • CA Foundation Preparation Strategy
  • MCQs
CA Foundation Exam June 2023 » CA Foundation Study Material » Statistics » regression coefficient
testseries_cafoundation

regression coefficient

Regression Coefficient, Regression Coefficient formula, Properties of Regression Coefficient

Table of Content
  •  

Coefficients refer to the statistics details that multiply the available factors or parameters in a specific equation. The graph of an equation is affected by the sign of its coefficients and their sizes. The technique of regression coefficient is like the slope of the regression equation’s line. The coefficient of a straightforward linear equation (with one variable x) is the line slope. A coefficient is also a calculated numerical value used as an indicator, such as a coefficient of correlation or a coefficient of determination. 

For example, let us consider the equation x = -2.5 + 7.0Y1 – 2.9Y2, 

the variables Y1 and Y2 are required to be multiplied with 7.0 and -2.9 correspondingly, hence the coefficients will result to be 7.0 and -2.9.

Regression Coefficient:

In linear regression, the predictor values are multiplied to arrive at Regression coefficients. The predictor values are the variable this is getting used to expecting a few different variables or outcomes. For example, below is the regression equation:

y = 2X + 6. 

+2 is the coefficient in this equation, X is the predictor value, and +6 is the constant value.

The direction of the relationship between a predictor variable and a response variable is indicated by the sign of each Regression coefficient.

  • A positive sign (+) suggests that as the predictor variable increases, so does the response variable.
  • A negative sign (-) suggests that the response variable decreases as the predictor variable increases.

The Regression coefficient value shows the normal change which happens is due to a one-unit change happening to the predictor. For example, if a coefficient is +2, the mean response value rises by two units for every unit increase in the predictor.

Regression Coefficient Formula:

The regression formula is being used to evaluate the relationship of the dependent and independent variables and determine how the proportional change of the independent variable affects the dependent variable.

The regression formula is as follows:

Regression Y=a+bX+∊

  • The letter Y denotes the dependent variable.
  • The letter X denotes the independent variable.
  • The intercept is denoted by a
  • The slope is denoted by b
  • The residual is denoted by ∊

Regression analysis is primarily used to identify equations that will best suit the available details. One type of regression analysis is linear analysis. A line’s equation is y = a + bX. 

In the formula, Y is the dependent variable, and one is attempting to anticipate the future value if X, the independent variable, alters by a certain quantity. 

The term “a” in the formula represents the intercept, which is the value that will remain constant regardless of variation in the independent variables. 

The term “b” in the formula denotes the slope, which represents how dependent the variable is on the independent variable.

Properties Of Regression Coefficient:

The Properties of Regression Coefficient are as follows:

  • The average values of two regression coefficients are used to calculate the correlation coefficient.
  • The correlation coefficient cannot be greater than one, i.e., 1. As a result, when one of the regression coefficients exceeds unity, the other should be less than unity.
  • Both regression coefficients will have the same symbol, i.e., positive or negative. As a result, one regression coefficient can’t be negative, and the other is positive.
  • The coefficient of correlation would have the same symbol as the regression coefficients, so if the regression coefficients are positive, the coefficient of correlation will be positive. If the regression coefficients are negative, the coefficient of correlation will also be negative.
  • The average of the two regression coefficients will be higher than the correlation value.

 Regression Coefficient:

The Regression Coefficient is the constant ‘b’ in the regression equation. This equation can also be denoted as. It is also known as a Slope Coefficient because it defines the line slope, i.e., the modification in the Y value corresponding to the unit change in X. This also means the change of the independent factor due to the unit change of the additional factor.

There will be two regression coefficients if there are two regression equations:

  • The symbol denotes the coefficient of determination of X on Y, and it indicates the change in X for each unit change in Y. The formula is:

 bxу=rσxrσy 

σx = Standard deviation of x

σy = Standard deviation of y

When the variations from the actual means of X and Y are taken into account, they can be calculated using the below formula:

 bxу=ΣхуΣу² 

When calculating deviations from the assumption of mean, the mathematical methodology used is as follows:

 bxу=NΣdхdy-ΣdxΣdyNΣdy²-(Σdу²)

  • Y on X Regression Coefficient: The symbol byx is used to represent the change in Y that relates to a unit change in X. Y. The formula is:

  bуx=rσyrσx 

rσx = Standard deviation of x

rσy = Standard deviation of y

If the deviations from the actual means are factored in, the below formula is used:

 byx=ΣхуΣx² 

When calculating deviations from the assumption of mean, the mathematical methodology used is as follows:

 bxу=NΣdхdy-ΣdxΣdyNΣdx²-(Σdx²) 

Conclusion

The regression coefficients are a quantitative measurement used to evaluate the average functional relationship among variables. One variable is dependent on the other variable in a regression analysis. Hence one variable is a dependent variable, and the other is the independent variable. It also assesses the degree to which one variable is dependent on another variable.

faq

Frequently asked questions

Get answers to the most common queries related to the CA Examination Preparation.

Why is the Regression Coefficient technique widely used?

Ans : The regression Coefficient technique is a statistical practice that is widely used to approxi...Read full

What factors influence regression coefficients?

Ans : If all informational variables are held constant, the regression coefficients are interpreted...Read full

What are the properties of the regression coefficients?

Ans : The regression coefficients are a statistical technique that helps determine the average func...Read full

How can the regression results be interpreted?

Ans : A sign of the regression coefficient indicates a positive or negative relationship between ev...Read full

What can be the maximum value of the coefficient of regression?

Ans : The correlation coefficient ranges from -1 to 1, with a value closer to -1 denoting significa...Read full

Ans : The regression Coefficient technique is a statistical practice that is widely used to approximate the relationships among one or more independent variables and dependent variables. Regression is a valuable tool because it is used to evaluate the relationship strength among two or more factors. Then it is used to model that relationship in the future. 

Ans : If all informational variables are held constant, the regression coefficients are interpreted as the influence of each variable on page expenses. 

Ans : The regression coefficients are a statistical technique that helps determine the average functional relationship among variables. One variable is dependent on the other variable in a regression analysis. It also assesses the degree to which one variable is dependent on another variable.

Ans : A sign of the regression coefficient indicates a positive or negative relationship between every independent variable and the dependent variable. A positive coefficient shows that as the independent variable value increases, so does the mean of the dependent variable. 

Ans : The correlation coefficient ranges from -1 to 1, with a value closer to -1 denoting significant negative association and a value closer to 1 denoting high positive association. On the other contrary, the range of the regression coefficient is not fixed. It is determined by how much the predictor factors impact the dependent variable.

 

Crack CA Foundation with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the CA Foundation Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Application Process
CA Foundation Exam Pattern 2024
CA Foundation Results(Out) – Result Link at icai.nic.in
CA Foundation Syllabus 2023 – (New & Old)
CA Intermediate Results
Eligibility
Examination Centres
Last Year’s Papers for CA Foundation
Registration Fee for CA Foundation Course
See all

Related articles

Learn more topics related to Statistics
Total and Compound Probability

The article discusses the total probability theorem, the law of total and compound probability, theorems of total and compound probability, total and compound probability theorems ppt. and more.

Time Series Analysis

The article discusses what time series analysis is and looks at the importance of time series analysis. It will provide a time series analysis example.

Time Series

Are you willing to understand the concept of time series? If yes, then read more and know about the role of Time Series in Statistics, Time series models, time-series data, etc.

Theoretical Distributions

What are the various types of probability distributions, including theoretical distribution and its multiple divisions? What are its heads and subheads?

See all
Access more than

1,470+ courses for CA Foundation

Get subscription

Trending Topics

  • Nature of Employment
  • Fixed Capital and Working Capital
  • Demographic Environment
  • Chapter wise Free MCQ test Series
freeliveclasses_ca

Related links

  • CA Intermediate Subscription
  • CA Intermediate Free Trial
  • CA Intermediate AIMT
  • Demo Lectures for Yoddha Warm-up Batch
  • CA Intermediate Store
  • CA Foundation Study Materials
  • CA Intermediate Batches
testseries_ca
Subscribe Now
.
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2025 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY