Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

Watch Free Classes
    • Free courses
    • JEE Main 2024
    • JEE Main 2024 Live Paper Discussion
    • JEE Main Rank Predictor 2024
    • JEE Main College Predictor 2024
    • Stream Predictor
    • JEE Main 2024 Free Mock Test
    • Study Materials
    • Notifications
    • JEE Advanced Syllabus
    • JEE Books
    • JEE Main Question Paper
    • JEE Coaching
    • Downloads
    • JEE Notes & Lectures
    • JEE Daily Videos
    • Difference Between
    • Full Forms
    • Important Formulas
    • Exam Tips
JEE Main 2026 Preparation: Question Papers, Solutions, Mock Tests & Strategy Unacademy » JEE Important Formulas » JEE Maths Formulas- Part 2

JEE Maths Formulas- Part 2

In this article we will go through maths quick formula revision for JEE 2022. Find the important formulas for Vectors, Parabola, Definite Integration and Ellipse.

Table of Content
  •  

Vectors Formula

The formula for vectors are as stated below

DescriptionFormula
Position Vector of a Point

If a and b are positive vectors of two points A and B, then

AB =b- a

  • Distance Formula: Distance between the two points A( a ) and B( b) is

AB= |( a ) ⃗-b ⃗ |∣(a)⃗−b⃗∣

  • Section Formula: r ⃗=(n ( a ) ⃗+m b ⃗ )/(m+n)r⃗=(n(a)⃗+mb⃗)/(m+n)      Midpoint of AB=(( a ) ⃗+b ⃗)/2((a)⃗+b⃗)/2
Scalar Product of Two vectors

a .b= a b cosθ , where a , b are the magnitude of a and b respectively and θ is the angle between a and b

  • i.i=j.j=k.k=1; i.j=j.k=k.i=0 , projection of a  on b= a . b /b 
  • If ( a ) ⃗=a_1 i+a_2 j+a_3 k & ( b ) ⃗=b_1 i+b_2 j+b_3 k then a ⃗.( b ) ⃗=a_1 b_1+a_2 b_2+a_3 b_3
  • The angle ∅ between a & b is given by ∅ =〖cos〗^(-1) (a ⃗.( b ) ⃗)/| ( a ) ⃗ || ( b ) ⃗ | ,0≤∅≤π.∅=〖cos〗(−1)(a⃗.(b)⃗)/∣(a)⃗∣∣(b)⃗∣,0≤∅≤π
  • a . b =0 a Perpendicular to  b   (a≠0, b ≠0)
Vector Product of Two vectors
  • If a & b are two vectors and is the angle between them then
  • a. b =absinθ n , where n is the unit vector perpendicular to both a & b such that a,b& n form a right handed screw system
  • Geometrically a b=area of the parallelogram whose two adjacents sides are represented by a & b 
  • i.i=j.j=k.k=0;  i.j=k,  j.k=i,  k.i=j
  •  a ⃗=a_1 i ̂+a_2 j ̂+a_3 k ̂ & b ⃗=b_1 i ̂+b_2 j ̂+b_3 k ̂ then a ⃗× b ⃗= =  b= o↔  a and b are parallel (collinear) (a≠0, b≠0) i.e. a=K b where K is a scalar. ±( a ⃗× b ⃗)/| a ⃗× b ⃗ |±(a⃗×b⃗)/∣a⃗×b⃗∣
  • Unit vector perpendicular to the plane of a & b is n= ABC=1/2 [a ⃗×b ⃗+b ⃗×c ⃗+c ⃗×a ⃗ ]ABC=1/2[a⃗×b⃗+b⃗×c⃗+c⃗×a⃗]
  • If a,b & c are the position vectors of 3 points A, B & C then the vector area of triangle ABC=1/2ab+bc+ca. The points A, B & C are collinear if
    • a ⃗×b ⃗+b ⃗×c ⃗+c ⃗×a ⃗=0 ⃗a⃗×b⃗+b⃗×c⃗+c⃗×a⃗=0⃗
  • Area of any quadrilateral whose diagonal vectors are (d_1 ) ⃗ & (d_2 ) ⃗ is given by 1/2 |(d_1 ) ⃗×(d_2 ) ⃗ |1/2∣(d1)⃗×(d2)⃗∣
  • Lagrange’sIdentity:(a ⃗×b ⃗ )^2=|a ⃗ |^2 |b ⃗ |^2-(a ⃗.b ⃗ )^2=[((a) ⃗×a ⃗ ) (a ⃗×(b)) ⃗ ( b ⃗×(a)) ⃗ ( b ⃗×(b)) ⃗](a⃗×b⃗)2=∣a⃗∣2∣b⃗∣2−(a⃗.b⃗)2=[((a)⃗×a⃗)(a⃗×(b))⃗(b⃗×(a))⃗(b⃗×(b))⃗]
Scalar Triple Product
  • The scalar triple product of three vectors a,b & c  is defined as:

a ⃗×b ⃗.c ⃗=|a ⃗ ||b ⃗ ||c ⃗ | □sin sin θ □cos cos ∅a⃗×b⃗.c⃗=∣a⃗∣∣b⃗∣∣c⃗∣□sinsinθ□coscos∅

  • Volume of tetrahedron V=[a ⃗.b ⃗.c ⃗ ]V=[a⃗.b⃗.c⃗]
  • In a scalar triple product the position of dot and cross can be interchanged i.e.

a ⃗.(b ⃗×c ⃗ )=(a ⃗×b ⃗ ).c ⃗ Or [a ⃗ b ⃗ c ⃗ ]=[b ⃗ c ⃗ a ⃗ ]=[c ⃗ a ⃗ b ⃗ ] a ⃗.(b ⃗×c ⃗ )=-a ⃗.(c ⃗×b ⃗) i.e. [a ⃗ b ⃗ c ⃗ ]=-[a ⃗ c ⃗ b ⃗]a⃗.(b⃗×c⃗)=(a⃗×b⃗).c⃗Or[a⃗b⃗c⃗]=[b⃗c⃗a⃗]=[c⃗a⃗b⃗]a⃗.(b⃗×c⃗)=−a⃗.(c⃗×b⃗)i.e.[a⃗b⃗c⃗]=−[a⃗c⃗b⃗]

  • If a ⃗=a_1 i+a_2 j+a_3 k; b ⃗=b_1 i+b_2 j+b_3 k & c ⃗=c_1 i+c_2 j+c_3 k then

a.b.c=

  • If a,b,c are coplanar
    [a ⃗ b ⃗ c ⃗ ][a⃗b⃗c⃗]
  • Volume of tetrahedron OABC with O as origin & A(a), B(b) and C(c) be the vertices = |1/6[a ⃗ b ⃗ c ⃗]|∣1/6[a⃗b⃗c⃗]∣
  • The position vector of the centroid of a tetrahedron if the pv’s of its vertices are a,b,c & d are given by 1/4[a ⃗+b ⃗+c ⃗+d ⃗]1/4[a⃗+b⃗+c⃗+d⃗]
Vector Triple Product

a ⃗×(b ⃗×c ⃗ )=(a ⃗.c ⃗ ) b ⃗-(a ⃗.b ⃗ ) c ⃗, (a ⃗×b ⃗ )×c ⃗=(a ⃗.c ⃗ ) b ⃗-(b ⃗.c ⃗)a ⃗a⃗×(b⃗×c⃗)=(a⃗.c⃗)b⃗−(a⃗.b⃗)c⃗,(a⃗×b⃗)×c⃗=(a⃗.c⃗)b⃗−(b⃗.c⃗)a⃗

In general: (a ⃗×b ⃗ )×c ⃗≠a ⃗×(b ⃗×c ⃗ )(a⃗×b⃗)×c⃗=a⃗×(b⃗×c⃗)

Parabola formula

The formula for parabola are as stated below

DescriptionFormula
Equation of standard parabola:

The equation of parabola with focus at (a,0), a>0 and directrix x = -a is given as

y^2=4axy2=4ax

When vertex is (0, 0) then axis is given as

y = 0

Length of latus rectum is equals to 4a

Ends of the latus rectum are L(a, 2a) and L’(a, -2a).

Parametric representation

The point (x,y1) lies outside, on or inside the parabola which is given as y = 4ax

Therefore, equation of parabola now becomes,

〖y_1〗^2-4ax≥0〖y1〗2−4ax≥0

Or

〖y_1〗^2-4ax<0〖y1〗2−4ax<0

Line and a parabola

Length of the chord intercepted by the parabolay^2=4axy2=4ax  on the line y = mx+c is given as

4/m^2 (√(a(1+m^2 )(a-mc) )4/m2(√(a(1+m2)(a−mc))

Tangents to the parabola

Tangent of the parabola y^2=4axy2=4axis given as T = 0

y=mx+am , m≠0 is the tangent of parabola y^2=4ax at (a/m^2 ,2a/m)y2=4axat(a/m2,2a/m)

Normal to the parabola y2=4ax

Normal to the paraboly^2=4axy2=4ax is given as

y-y_1=(-y_1)/2a (x-x_1 )y−y1=(−y1)/2a(x−x1)

A chord with a given middle point

The equation of the chord of parabola y^2=4axy2=4axwith midpoint (x1, y1) is given as T = S1.

Here,

S_1=y_1-4axS1=y1−4ax

Definite Integration Formula

The formula for definite integration are as stated below

Description Formula
Definite Integral as Limit Sum

∫_a^b f(x)dx=∑_(r=1)^n hf(a+rh)∫abf(x)dx=∑(r=1)nhf(a+rh)

Here h=(b-a)/nh=(b−a)/n

is the length of each subinterval

Definite Integral Formula Using the Fundamental theorem of calculus∫_a^b f(x)dx=F(b)-F(a), where F^’ (x)=f(x)∫abf(x)dx=F(b)−F(a),whereF’(x)=f(x)
Properties of Definite Integral

∫_a^b f(x).dx=∫_a^b f(t).dt∫abf(x).dx=∫abf(t).dt

∫_a^b f(x).dx=-∫_b^a f(x).dx∫_a^b cf(x).dx=c∫_a^b f(x).dx∫_a^b f(x)±g(x).dx=∫_a^b f(x).dx±∫_a^b g(x).dx∫_a^b f(x).dx=∫_a^c f(x).dx+∫_c^b f(x).dx∫_a^b f(x).dx=∫_a^b f(a+b-x).dx∫_0^a f(x).dx=∫_0^a f(a-x).dt

∫_0^2a f(x).dx=2∫_0^a f(x).dx f(2a-x)=f(x)

∫_0^2a f(x).dx=0∫_(-a)^a f(x).dx=2∫_0^a f(x).dxf(-x)=f(x)
Definite Integrals involving Rational or irrational Expression

∫_a^∞ dx/(x^2+a^2 )=π/2a∫a∞dx/(x2+a2)=π/2a

  • ∫_a^∞ (x^m dx)/(x^n+a^n )=(πa^(m-n+1))/(n ((m+1)π)/n) ),0<m+1<n∫a∞(xmdx)/(xn+an)=(πa(m−n+1))/(n((m+1)π)/n)),0<m+1<n
  • ∫_a^∞ (x^(p-1) dx)/(1+x)=π/(□sin sin (pπ) ),0<p<1∫a∞(x(p−1)dx)/(1+x)=π/(□sinsin(pπ)),0<p<1
  • ∫_a^∞ dx/√(a^2-x^2 )=π/2∫a∞dx/√(a2−x2)=π/2
  • ∫_a^∞ √(a^2-x^2 ) dx=(πa^2)/4∫a∞√(a2−x2)dx=(πa2)/4
Definite Integrals involving Trigonometric Functions
  • ∫_0^π mx )nx )dx={0 if m≠n π/2 if m=n m,n positive integers
  • ∫_0^π mx )nx )dx={ 0 if m≠n π/2 if m=n m,n positive integers
  • ∫_0^π mx )nx )dx={ 0 if m+n even 2m/(m^2-n^2 ) if m=n odd m,n integers
  • ∫_0^(π/2) x dx=∫_0^(π/2) x dx=π/4∫0(π/2)xdx=∫0(π/2)xdx=π/4
  • ∫_0^(π/2) x dx =∫_0^(π/2) dx =(1.3.5…….2m-1)/(2.4.6……2m).π/2,m=1,2,…∫0(π/2)xdx=∫0(π/2)dx=(1.3.5…….2m−1)/(2.4.6……2m).π/2,m=1,2,…
  • ∫_0^(π/2) x dx =∫_0^(π/2) dx =(2.4.6….2m)/(1.3.5…2m+1),m=1,2,…∫0(π/2)xdx=∫0(π/2)dx=(2.4.6….2m)/(1.3.5…2m+1),m=1,2,…
If f(x) is a periodic function with period T
  • ∫_0^nT f(x)dx=n∫_0^T f(x)dx,n∈z,∫_a^(a+nT) f(x)dx=n∫_0^T f(x)dx,n∈z, a∈R∫0nTf(x)dx=n∫0Tf(x)dx,n∈z,∫a(a+nT)f(x)dx=n∫0Tf(x)dx,n∈z,a∈R
  • ∫_mT^nT f(x)dx=(n-m)∫_0^T f(x)dx,m,n∈z,∫_nT^(a+nT) f(x)dx=∫_0^a f(x)dx,n∈z, a∈R∫mTnTf(x)dx=(n−m)∫0Tf(x)dx,m,n∈z,∫nT(a+nT)f(x)dx=∫0af(x)dx,n∈z,a∈R
  • ∫_(a+nT)^(b+nT) f(x)dx=∫_a^a f(x)dx,n∈z, a,b∈R∫(a+nT)(b+nT)f(x)dx=∫aaf(x)dx,n∈z,a,b∈R
Leibnitz TheoremIf F(x)=∫_(g(x))^(h(x)) f(t)dt, then (dF(x))/dx=h^’ (x)f(h(x))-g^’ (x)f(g(x))IfF(x)=∫(g(x))(h(x))f(t)dt,then(dF(x))/dx=h’(x)f(h(x))−g’(x)f(g(x))

Ellipse Formula

The formula for ellipse are as stated below

DescriptionFormula 
Standard Equation

x^2/a^2 +y^2/b^2 =1, where

  • Eccentricity: e=√(1-b^2/a^2 ) (0<e<1)  Directrices: x=±a/e
  • Foci: S=±a e,0. Length of major axes =2a and minor axes =2b
  • Vertices: A’=-a,0 & A=a,0.
  • Latus Rectum: = (2b^2)/a=2a(1-e^2)

Auxiliary circle

x^2+y^2 = a^2

Parametric Representation

x=a cos θ & y=b sin θ

Position of a Point w.r.t. an Ellipse

The point P(x_1,y_1) lies outside, inside or on the ellipse according as;

(x_1^2)/a^2 + (y_1^2)/b^2 -1><or=0

Line and an Ellipse

The line y=mx+c meets the ellipse
x^2/a^2 +y^2/b^2 =1in two points real, coincident or imaginary according as c^2is < =or > a^2 m^2+b^2

Tangents

  • Slope form: y=mx±√(a^2 m^2+b^2 )
    ,  point form: 〖xx〗_(1 )/a^2 +〖yy〗_1/b^2 =1
  • Parametric form: xcosθ/a+ysinθ/b=1

Normal

(a^2 x)/x_1 – (b^2 y)/y_1 =a^2-b^2, ax.secθ-by.cosecθ=(a^2-b^2 ), y=mx-(〖(a〗^2-b^2)m)/(√(a^2+b^2 ) m^2 )

Director Circle

x^2+y^2=a^2+b^2

 

Also see: JEE Maths Formulas Part 1

Important Links:

JEE Coaching in Lucknow

JEE Mains Exam Pattern

JEE Coaching in Kota

JEE Books

How to Prepare for JEE Mains

JEE Main Sample Paper

How to Prepare for JEE Mains From Class 11

JEE Advanced 2021 Paper

How Many Hours to Study for IIT

JEE Study Material

How to Prepare for JEE Advanced

JEE Coaching in Chandigarh

JEE Advanced Syllabus

Best Online JEE Coaching

JEE Main 2020 Question Paper

JEE Main Mock Test

JEE Mains 2021 Paper PDF

JEE Coaching in Ahmedabad

JEE Main Question Paper 2022

JEE Coaching in Noida

JEE Main Syllabus

JEE Coaching in Patna

JEE Mains 2022 Syllabus With Weightage

JEE Rank Predictor

JEE Notes PDF

IIT Question Paper

Crack IIT JEE with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators
  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the JEE Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Allotment of Examination Centre
JEE Advanced Eligibility Criteria
JEE Advanced Exam Dates
JEE Advanced Exam Pattern 2023
JEE Advanced Syllabus
JEE Application Fee
JEE Application Process
JEE Eligibility Criteria 2023
JEE Exam Language and Centres
JEE Exam Pattern – Check JEE Paper Pattern 2024
JEE Examination Scheme
JEE Main 2024 Admit Card (OUT) – Steps to Download Session 1 Hall Ticket
JEE Main Application Form
JEE Main Eligibility Criteria 2024
JEE Main Exam Dates
JEE Main Exam Pattern
JEE Main Highlights
JEE Main Paper Analysis
JEE Main Question Paper with Solutions and Answer Keys
JEE Main Result 2022 (Out)
JEE Main Revised Dates
JEE Marking Scheme
JEE Preparation Books 2024 – JEE Best Books (Mains and Advanced)
Online Applications for JEE (Main)-2022 Session 2
Reserved Seats
See all
Access more than

10,505+ courses for IIT JEE

Get subscription

Get the learning app

Download lessons and learn anytime, anywhere with the Unacademy app

Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2026 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY