Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

Watch Free Classes
    • Free courses
    • JEE Main 2024
    • JEE Main 2024 Live Paper Discussion
    • JEE Main Rank Predictor 2024
    • JEE Main College Predictor 2024
    • Stream Predictor
    • JEE Main 2024 Free Mock Test
    • Study Materials
    • Notifications
    • JEE Advanced Syllabus
    • JEE Books
    • JEE Main Question Paper
    • JEE Coaching
    • Downloads
    • JEE Notes & Lectures
    • JEE Daily Videos
    • Difference Between
    • Full Forms
    • Important Formulas
    • Exam Tips
JEE Main 2026 Preparation: Question Papers, Solutions, Mock Tests & Strategy Unacademy » JEE Study Material » Physics » Radius of gyration

Radius of gyration

A radius of gyration is the distance from a body's centre of mass at which the entire mass could be concentrated without affecting its moment of rotational inertia about an axis through the center of mass.

Table of Content
  •  

The radius of gyration is always centred on a rotational axis. The radial distance from an axis at which a body’s mass is supposed to be concentrated and the moment of inertia equals the moment of inertia of the actual mass about the axis. The radius of gyration can be described mathematically as the root mean square distance of the specific point from the centre of gravity or the predefined axis, depending on the needed value.

The perpendicular distance is the distance determined from that point to the axis of rotation. The radius of gyration is well recognised for explaining the mass distribution of a spinning body about its axis of rotation. It is a measurement of a cross-sectional area’s elastic stability and stiffness in the face of a bulking force.

Radius of Gyration – Definition

In general, a radius of gyration is the distance from a body’s centre of mass at which the entire mass could be concentrated without affecting its moment of rotational inertia about an axis through the center of mass.

This is also known as the measure of how a rotating rigid body’s mass can be distributed along its axis of rotation.

Significance

  1. A more conservative estimate of the radius of gyration discloses the rotational axis at which the segment catches.
  2. It can also be used to adjust the intensity between cross-sections of a given section.
  3. In contrast to the presentation of many forms of fundamental shapes at the pressure hour, the range of gyration is helpful.
  4. When estimating the catching heap of a beam or pressure, the radius of gyration is important.
  5. With a lesser estimate of the radius of gyration, the primary investigation is successful.

Radius of gyration formula

The radius of gyration is defined as the root mean square distance between the object’s components and its center of mass or a specified axis. It is determined by the application. It is the angle formed by the perpendicular distance between the mass and the rotating axis.

The radius of gyration can be used to describe the trajectory of a moving point as a body. The regular distance covered by this point can be represented by the range of gyration at that place.

In terms of the radius of gyration, the formula for moment inertia is:

I = Mk2 …..(1)

The moment of inertia is represented by I, while the mass of the body is represented by m.

As a result, the gyration radius is as follows:

The moment of inertia of any rigid body may be calculated using the radius of gyration (1).

Consider a body made up of n particles, each has weight of m. Let us consider for the perpendicular distance from the pivot of rotation to particles. It is denoted by the letters r1, r2, r3,… rn. In terms of the radius of gyration, we can see that the condition produces the moment of inertia (1). We can calculate the body’s moment of inertia by substituting the qualities in the condition.

I = m1 r12+ m1r22+ m3 r32 + ……. + mn rn2……… (3)

If all particles have the same mass, equation (3) may be rewritten as

As a result, we may express mn as M, which denotes the body’s overall mass.

Therefore, the equation will be:

We may deduce the following from equation (4) and (1):

From final equation, we can say that the radius of gyration is the root-mean-square distance of various parts of the body. It is derived from the rotational axis.

Application of radius of Gyration

In Structural Engineering

The radius of gyration is defined as the dispersion of several segments of a specific item around a given body in material science and physics. It revolves around the central pivot, which is centred on the mass of the supplied body. This property helps in the assessment of a segment’s solidity in a precise way.

For given cross-sectional areas and segments with plane areas, the radius of gyration is used as an integral for calculating and determining the position of the clasp around the pivot. In engineering, this is done because the bodies are continuous chunks of matter that require an integral calculation.

In Molecular Physics

In polymer physics, the radius of gyration is used to calculate the dimensions of the polymer chain. The gyration radius is found to be related to the root mean square distance between the monomers. When it comes to molecular or polymer physics, the radius of gyration is calculated as an average across time.

The gyration radius is a significant property. Static light scattering, X-ray scattering, and small-angle neutron scattering are some of the additional experimental methods that can be used to determine it. The radius of gyration varies greatly depending on the object. To compute the radius of gyration of rods, cylinders, cones, rings, shells, and other objects, several formulae and data are used.

Conclusion

The radius of gyration is defined as the root mean square distance between the object’s components and its center of mass or a specified axis. The regular distance covered by this point can be represented by the range of gyration at that place. The radius of gyration is always centred on a rotational axis. The radius of gyration can be described mathematically as the root mean square distance of the specific point from the centre of gravity or the predefined axis, depending on the needed value. However there are various real life uses of the radius of gyration such as in molecular physics.

Crack IIT JEE with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the JEE Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Allotment of Examination Centre
JEE Advanced Eligibility Criteria
JEE Advanced Exam Dates
JEE Advanced Exam Pattern 2023
JEE Advanced Syllabus
JEE Application Fee
JEE Application Process
JEE Eligibility Criteria 2023
JEE Exam Language and Centres
JEE Exam Pattern – Check JEE Paper Pattern 2024
JEE Examination Scheme
JEE Main 2024 Admit Card (OUT) – Steps to Download Session 1 Hall Ticket
JEE Main Application Form
JEE Main Eligibility Criteria 2024
JEE Main Exam Dates
JEE Main Exam Pattern
JEE Main Highlights
JEE Main Paper Analysis
JEE Main Question Paper with Solutions and Answer Keys
JEE Main Result 2022 (Out)
JEE Main Revised Dates
JEE Marking Scheme
JEE Preparation Books 2024 – JEE Best Books (Mains and Advanced)
Online Applications for JEE (Main)-2022 Session 2
Reserved Seats
See all

Related articles

Learn more topics related to Physics
Zinc-Carbon Cell

The battery you use every day in your TV remote or torch is made up of cells and is also known as a zinc-carbon cell. Read on to know more.

ZEROTH LAW OF THERMODYNAMICS

Read about the Zeroth law of thermodynamics. Learn about the zeroth law definitions and their examples.

Zener Diode As A Voltage Regulator

Understand the concepts of Zener diodes. Also, learn about the efficiency and limitations of Zener Diode as a Voltage Regulator.

Zener diode as a voltage regulator

zener diode is a very versatile semiconductor that is used for a variety of industrial processes and allows the flow of current in both directions.It can be used as a voltage regulator.

See all
Access more than

10,505+ courses for IIT JEE

Get subscription
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2026 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY