Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

Watch Free Classes
    • Free courses
    • JEE Main 2024
    • JEE Main 2024 Live Paper Discussion
    • JEE Main Rank Predictor 2024
    • JEE Main College Predictor 2024
    • Stream Predictor
    • JEE Main 2024 Free Mock Test
    • Study Materials
    • Notifications
    • JEE Advanced Syllabus
    • JEE Books
    • JEE Main Question Paper
    • JEE Coaching
    • Downloads
    • JEE Notes & Lectures
    • JEE Daily Videos
    • Difference Between
    • Full Forms
    • Important Formulas
    • Exam Tips
JEE Main 2026 Preparation: Question Papers, Solutions, Mock Tests & Strategy Unacademy » JEE Study Material » Physics » Oscillation of a spring

Oscillation of a spring

This article has insights about the basics of spring oscillation. There are two basic types of oscillations in spring, one is horizontal oscillation and another is vertical oscillation. We will discuss horizontal as well as vertical oscillations in this article.

Table of Content
  •  

Introduction

When the position of a particle / mass varies periodically between two points or about a certain point then it is said to be in oscillatory motion. Restoring force is required for the oscillation of a particle or mass. Whenever, a particle or mass is forced to change its stable position, then in the presence of restoring force the particle or mass starts oscillating between two points or about a central point. Whenever the spring is either stretched or compressed, the restoring force comes into existence. We can compress or stretch the spring either horizontally or vertically. Due to the restoring force in the spring, the spring starts oscillating between two points or about a central point.  In this article, first we will discuss horizontal oscillation and then vertical oscillation along with the combination of springs.

Hooke’s Law and Spring Constant

Hooke’s law says that “the restoring force developed in the spring due to extension / compression , is directly proportional to the extension / compression of the spring. It is generally written as, “F = -k x”. “F” represents the restoring force, “’x” is the displacement of spring either in the form of extension or compression and “k” is constant of proportionality. As we have negative signs in Hooke’s law, we can say that the direction of restoring force and the direction of displacement have opposite directions. 

The constant of proportionality is known as stiffness constant /spring constant. Stiffness of the spring is indicated by  this Spring Constant   i.e. higher value of “k” means more stiffness and lower value of spring constant means less stiffness of the given spring. 

Horizontal Oscillation of a spring 

We will assume a system in which we have a block of mass m attached to a massless spring with stiffness constant or force constant or spring constant of the spring as “k”. We will place the spring mass system on a frictionless / smooth horizontal surface.

 Let x0 be the equilibrium position or mean position of mass m at time t = 0 and the spring is in relaxed condition i.e. mass is at rest. If we pull the mass horizontally through a small displacement x towards right from its equilibrium position and then after releasing, it will start back and forth oscillating about this mean / equilibrium position. If the restoring force in the spring is assumed to be “F” then,

F= -K x (from Hooke’s law)

Now, 

md2xdt2= -K x ( from Newton’s second law)

Now, comparing above equation with simple harmonic motion, we have

2= km 

So , ω=km

Frequency of oscillation can be given as f= 2π= 12πkm

Time period of oscillation, T= 1f= 2πmk

Vertical Oscillation of a spring

We will consider a spring-mass system. In this system a block of mass m has been attached at one end of  a mass-less spring and the spring has “k” as spring constant. We will suspend the spring mass system from a rigid support and assume that no air drag is present. In this case, the force constant is given by,

k= mgl

Now, if we pull down the block by a small distance “x”, a restoring force “-kx” acts vertically upward and pulls the block in upward direction. Due to this restoring force, the block will return to its initial position and it will continue to move in upward direction. It will overshoot the initial equilibrium condition and the spring will be compressed by distance “’y” in upward direction. In this situation, the restoring force will be in a downward direction. Due to this, the block will again move in downward direction and overshoot the equilibrium point. The system will continue to execute oscillations in vertical direction.

Now, comparing above equation with simple harmonic motion, we have

2= km 

So , ω=km

Frequency of oscillation can be given as f= 2π= 12πkm

Time period of oscillation, T= 1f= 2πmk = 2πmlmg = 2πlg

Parallel and Series Combination of springs

If we have two massless springs with spring constant “k1” and “k2” connected in parallel to the same block of mass “m” at one end. Then equivalent spring constant of this combination is given as:

keq = k1 + k2 .

Time period of oscillation, T= 1f= 2πmk1 + k2

If we have two massless springs with spring constant k1 and k2 connected in series to a block of mass “m”. Then equivalent spring constant of this combination is given as

k= k1*k2k1+k2.

Time period of oscillation, T= 1f= 2πm(k1+k2)k1* k2

Conclusion

In the above article, we discussed the oscillations of a spring in horizontal and parallel directions. We observed that spring constant is a very important factor in oscillation of a spring as it decides the stiffness of the spring. If we have higher value of spring constant, then we have greater stiffness of the given spring, which means greater restoring for a particular displacement of the spring and for lower value of stiffness of the spring, lesser restoring force will be developed in the spring for a particular displacement of the spring. 

The spring constant of the spring affects the time period of oscillation of the spring mass system as the time period of oscillation and the square root of the spring constant are inversely related to each other which means that for higher value of spring constant, time period has lesser value and for lower value of the spring constant we get higher value for time period “T” of oscillation.

faq

Frequently asked questions

Get answers to the most common queries related to the IIT JEE Examination Preparation.

What is oscillation?

Ans: Whenever the position of a body/particle/mass changes periodically between two points or about...Read full

What is Hooke’s Law?

Ans: Hooke’s law says that, “the restoring force developed in the spring due to extension/compr...Read full

What is the importance of the spring constant?

Ans: Spring constant is the measure of the stiffness of the spring.

What is the effect of the spring constant on the time period of oscillation?

Ans: The time period of oscillation decreases with an increase in spring constant and vice versa....Read full

What is the effect of spring constant on the restoring force of spring?

Ans: The restoring force increases with an increase in the spring constant.

Ans: Whenever the position of a body/particle/mass changes periodically between two points or about a stable point, then it is known as oscillation.

Ans: Hooke’s law says that, “the restoring force developed in the spring due to extension/compression, is directly proportional to the extension/compression of the spring. It is generally written as, “F = -k x”. “F” represents the restoring force, “’x” is the displacement of spring either in the form of extension or compression and “k” is the constant of proportionality.

Ans: Spring constant is the measure of the stiffness of the spring.

Ans: The time period of oscillation decreases with an increase in spring constant and vice versa.

Ans: The restoring force increases with an increase in the spring constant.

Crack IIT JEE with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the JEE Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Allotment of Examination Centre
JEE Advanced Eligibility Criteria
JEE Advanced Exam Dates
JEE Advanced Exam Pattern 2023
JEE Advanced Syllabus
JEE Application Fee
JEE Application Process
JEE Eligibility Criteria 2023
JEE Exam Language and Centres
JEE Exam Pattern – Check JEE Paper Pattern 2024
JEE Examination Scheme
JEE Main 2024 Admit Card (OUT) – Steps to Download Session 1 Hall Ticket
JEE Main Application Form
JEE Main Eligibility Criteria 2024
JEE Main Exam Dates
JEE Main Exam Pattern
JEE Main Highlights
JEE Main Paper Analysis
JEE Main Question Paper with Solutions and Answer Keys
JEE Main Result 2022 (Out)
JEE Main Revised Dates
JEE Marking Scheme
JEE Preparation Books 2024 – JEE Best Books (Mains and Advanced)
Online Applications for JEE (Main)-2022 Session 2
Reserved Seats
See all

Related articles

Learn more topics related to Physics
Zinc-Carbon Cell

The battery you use every day in your TV remote or torch is made up of cells and is also known as a zinc-carbon cell. Read on to know more.

ZEROTH LAW OF THERMODYNAMICS

Read about the Zeroth law of thermodynamics. Learn about the zeroth law definitions and their examples.

Zener Diode As A Voltage Regulator

Understand the concepts of Zener diodes. Also, learn about the efficiency and limitations of Zener Diode as a Voltage Regulator.

Zener diode as a voltage regulator

zener diode is a very versatile semiconductor that is used for a variety of industrial processes and allows the flow of current in both directions.It can be used as a voltage regulator.

See all
Access more than

10,505+ courses for IIT JEE

Get subscription
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2026 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY