Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

JEE Main 2026 Preparation: Question Papers, Solutions, Mock Tests & Strategy Unacademy » JEE Study Material » Physics » Eigenvalues and Eigenvectors Solved Problems

Eigenvalues and Eigenvectors Solved Problems

Eigenvalues and Eigenvectors are used to make a spanning set. Solved problems will give you a better understanding of the concepts

Table of Content
  •  

Eigenvalues and Eigenvectors are used in linear algebra in mathematics, but in physics, these are widely used for vibration analysis, simple harmonic oscillators, quantum mechanics, matrix diagonalisation, and atomic orbitals. In particular, molecular physics uses Eigenvalues as ionisation potentials. 

The physical system has a wave function. Schrodinger’s equation is the solution to obtain the specific Eigenvalues of a physical system. Therefore, as physics seems to be everywhere in the environment, we have made these Eigenvalues and Eigenvectors solved problems notes for you. We will try to explain what Eigenvalues and Eigenvectors are. We even used simple techniques for Eigenvalues and Eigenvectors Solved Problems. Let’s explore.

What are Eigenvalues and Eigenvectors?

Briefly and simplified, the Eigenvalues and Eigenvectors are the eigenfunctions that often play a role in mechanics. The Eigenvector represents the principal axes, which can be decomposed in a stress tensor. The Eigenvalues define diagonal while Eigenvectors are taken as a basis. In general terms, Eigenvalues can be defined as a characteristic scalar value denoted by 𝜆. At the same time, an Eigenvector is a vector affected by a scalar factor, i.e. Eigenvalue when applied. Eigenvalues transform the direction of an Eigenvector.

The equation can be represented as:

𝑨𝒙=𝜆𝒙

Where, 

A = Linear transformation from a vector space 

𝜆 = Eigenvalue of A

𝒙 = Vector in vector space V

Before discussing Eigenvalues And Eigenvectors solved problems, let’s discuss the applications of Eigenvalues And Eigenvectors.

Applications of Eigenvalues and Eigenvectors

The equations of Eigenvalues and Eigenvectors are applied when solving problems related to light waves and microwaves that transport through the system. Sometimes Eigenvectors can measure the centrality of vertices. Eigenvectors are the means to study large data sets, even in principal component analysis. The Eigenvalues of the correlation matrix determine the practical significance.  

Now, look for the method to find Eigenvalues in this Eigenvalues and Eigenvectors solved problems notes.

How to find Eigenvalues?

Follow these steps for an easy understanding of Eigenvalues and Eigenvectors solved problems.

  • Before we start the approach, remember the question will have a square matrix 𝑛 × 𝑛.
  • Assume that 𝑨 is an 𝑛 × 𝑛 matrix. Let’s take 𝜆 as an Eigenvalue of A. 
  • An Eigenvector 𝒙 will be a real non-zero vector pointing in the direction where Eigenvalues stretch it.
  • Remember that the linear transformation is 𝒚 = 𝑨𝒙. 

So to find Eigenvalues, we need to follow a linear algebra approach.

As the matrix equation is 𝑨𝒙 = 𝜆𝒙 

Then, (𝑨−𝜆𝑰)𝒙 = 𝟎 

Where 𝑰 is the 𝑛 × 𝑛 identity matrix, but the above equation should be taken into consideration only if the determinant value equals zero. 

Hence, the matrix (𝑨−𝜆𝑰) is singular ⟹ 𝑑𝑒𝑡(𝑨−𝜆𝑰) = 0. 

When (𝑨−𝜆𝑰) is expanded, 𝑝𝜆 = 𝑑𝑒𝑡(𝑨−𝜆𝑰) would be the polynomial of degree 𝑛.

Eigenvalues And Eigenvectors Solved Problems

Here are some Eigenvalues And Eigenvectors solved problems.  

 1  1

Problem 1: If A is(4   1)𝜆1 = 3, 𝜆2 = -1

                 →   

If (𝑨−𝜆𝑰)  v = 0

                    →            →

Then, find v1 and v2. 

Solution: 

          1     1             1  0            x1        0                     1     1                1  0             x1        0                                

(4     1) -3 (0  1)   (x2)=(0)   ,        

                                    (4     1)-(-1) (0  1)   (x2)=(0)           

                                                                                                                                 

          1 -3    1              x1        0                           1 +1    1       x1            0                                 

(4      1 -3)(x2)=(0)     ,    (       )( )   ( )

                                    4      1 +1  x2        =     0           

 

          -2   1            x1        0                                2   1            x1        0

(  4 -2)(x2)=(0)     ,    ( 4   2)(x2)=(0)                                     

 

-2 x1 +x2 = 0                               2 x1 +x2 = 0

2×1 = x2                                       2x1 = x2

x1 = 1                                            x1 = -1                                                                                                                                                                                                                                                                    

一  一                                           一    一                                       

 x2   2                                             x2     2                

 

                      →          1         →         1

Therefore,    v1 = (2), v2 =(-2)

 

                       1    2

Problem 2: If A is(3   -4), find 𝜆1, 𝜆2.

 

Solution: As we know 𝑑𝑒𝑡(𝑨−𝜆𝑰) =0

                1-𝜆      2

So,     (  3     -4-𝜆) 

 

= (1-𝜆)(-4-𝜆)-2-3

= -4-𝜆+ 4𝜆+𝜆2-6

= 𝜆2+3𝜆-10

= (𝜆-2)(𝜆+5) = 0

 

Hence,  𝜆1 = 2, 𝜆2 = -5

 

                     

                               

                                        1  4

Problem 3: If A is(3  2)𝜆 = 5, -2

 

                 →   

If (𝑨−𝜆𝑰)  v = 0

                   → →

Then, find v1, v2.

 

Solution: 

          1 -𝜆    4              x1                                        1- 𝜆  4          x1           

(3      2 -𝜆)(x2) = 0     ,      (3  2 – 𝜆 ) (x2)= 0

 

          -4    4              x1                                        3  4         x1           

(3   2 -5)(x2) = 0       ,    (3  4 ) (x2)= 0 

 

       

 

                                  

                                        1                    -4

 Therefore,   v1 = (1), v2 =(3 )

 

Conclusion

Eigenvalues and Eigenvectors are used in linear algebra in mathematics, but in physics, these are widely used for vibration analysis, simple harmonic oscillators, quantum mechanics, matrix diagonalisation, and atomic orbitals. In particular, molecular physics uses Eigenvalues as ionisation potentials. 

 

Eigenvalues and Eigenvectors are one of the interesting topics of physics and chemistry both. In quantum mechanics, Eigenvalues And Eigenvectors solved problems that can even help determine the orbitals of atoms and molecules through Hartree-Fock theory. These Eigenvalues and Eigenvectors solved problems notes of Eigenvalues and Eigenvectors can help students in the problems related to light waves and microwaves that transport through the system.

faq

Frequently Asked Questions

Get answers to the most common queries related to the JEE Examination Preparation.

What are Eigenvalues?

Ans: The Eigenvalues define the diagonal value while Eigenvectors are taken as...Read full

What are Eigenvectors?

Ans. Briefly and simplified, the Eigenvalues and Eigenvectors are the eigenfun...Read full

Write the characteristic equation?

Ans. The equation can be represented as: ...Read full

What are the applications for Eigenvalues of Eigenvectors?

Ans. The equations of Eigenvalues and Eigenvectors are applied when solving pr...Read full

Solve the problem given below.

...Read full

Ans: The Eigenvalues define the diagonal value while Eigenvectors are taken as a basis. In general terms, Eigenvalues can be defined as a characteristic scalar value. It is denoted by 𝜆.

Ans. Briefly and simplified, the Eigenvalues and Eigenvectors are the eigenfunctions that often play a role in mechanics. The Eigenvector represents the principal axes, which can be decomposed in a stress tensor. The Eigenvalues define diagonal while Eigenvectors are taken as a basis. In general terms, Eigenvalues can be defined as a characteristic scalar value denoted by 𝜆. At the same time, Eigenvector is a vector affected by a scalar factor, i.e. Eigenvalue, when applied. Eigenvalues transform the direction of an Eigenvector.

Ans. The equation can be represented as:

𝑨𝒙=𝜆𝒙

Where, 

A = Linear transformation from a vector space V

𝜆 = Eigenvalue of A

𝒙 = Vector in vector space V

Ans. The equations of Eigenvalues and Eigenvectors are applied when solving problems related to light waves and microwaves that transport through the system. Sometimes Eigenvectors can measure the centrality of vertices. Eigenvectors are the means to study large data sets, even in principal component analysis. 

 

(-5-𝜆)(1-𝜆) + 8 = 0

-5+ 5𝜆 – 𝜆+𝜆2+ 8 = 0

𝜆2-4𝜆+3 = 0

(𝜆+3)(𝜆+1) = 0

Hence,  𝜆1 = -3, 𝜆2 = -1. Stay updated with the Eigenvalues and Eigenvectors solved problems notes for more such examples. 

Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2026 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY