Answer –
Let’s think a positive integer a,
Divide the positive integer a by 3, and let r be the reminder and b be the quotient such that
A= 3b + r ——(1)
Where r = 0,1,2,3
Case 1: Consider r = 0
Equation (1) becomes
a=3b
Squaring both the side
a2 = (3b)2
a2 = 9b2
a2 = 3 × 3b2
a2 = 3m
where m = 3b2
Case 2: Let r = 1
Equation (1)
a = 3b + 1
Squaring on both the side
a2 = (3b + 1)2
a2 = (3b)2 + 1 + 2 × (3b) × 1
a2 = 9b2 + 6b + 1
a2 = 3(3b2 + 2b) + 1
a2 = 3m + 1
Where m = 3b2 + 2b
Case 3: Let r = 2
Equation (1) becomes
a = 3b + 2
Squaring on both the sides
a2 = (3b + 2)2
a2 = 9b2 + 4 + (2 × 3b × 2)
a2 = 9b2 + 12b + 3 + 1
a2 = 3(3b2 + 4b + 1) + 1
a2 = 3m + 1
m = 3b2 + 4b + 1
∴ square of any positive integer is of form 3m or 3m+1.
So it is proved.