Question & Answer » Mathematics Questions » If a² + b² + c² -ab – bc – ca = 0 then Prove that a = b = c

If a² + b² + c² -ab – bc – ca = 0 then Prove that a = b = c

Answer: The given expression is: 

a2  + b2 + c2 – ab – bc – ca = 0

Now, if we multiply both sides with 2, we get 

2a2  + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0

So, 

(a2  – 2ab + b2) + (b2 – 2bc + c2) + (c2 – 2ac + a2) = 0

This implies, 

(a – b)2 + (b – c)2 + (a – c)2 = 0

Now, the square of two numbers can never be less than 0. So, 

a – b = 0; b – c = 0; a – c = 0

So, we can also write this as

a = b; b = c; a = c, or, 

a = b = c (HENCE PROVED)