Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

Watch Free Classes
  • NEET 2024
  • NEET Answer Key 2024
  • NEET 2024 Preparation Toolkit
  • NEET Rank Predictor 2024
  • NEET College Predictor 2024
  • Study Materials
  • Notifications
  • NEET Syllabus 2024
  • NEET Question Paper
  • NEET Notes
  • NEET Books
  • NEET Paper Pattern
  • Video Lectures
  • Mind Maps
  • Downloads
  • Difference Between
  • Full Forms
  • Exam Tips
  • MCQs
NEET UG 2026 » NEET UG Study Material » Physics » Current Density
neetug_toolkit

Current Density

In this article we will learn about Current, Types of Current, Current Density, Formula for Current Density, Current Density Dimensional Formula and Importance of Current Density.

Table of Content
  •  

Current 

Current is defined as the flow of electrically charged particles, which occurs mostly in electron-deficient atoms. The capital I is the conventional symbol for current. Ampere ( A ) is the standard unit of current. A current of one ampere, on the other hand, is one coulomb of charge passing through a specific place each second. According to physicists, conventional current is defined as current that moves from relatively positive to negative places. Electrons are the most prevalent negatively-charged carriers, and they move from a negative to a positive state. 

Types of Current

Current can be classified into two types:

  1. Direct Current: DC stands for direct current, which is an electric charge flow that does not change direction. Batteries, fuel cells, rectifiers, and generators with commutators all produce direct current. Because it was uneconomical to adapt direct current to the high voltages required for long-distance transmission in the late 1880s, it was replaced by alternating current (AC) for common commercial electricity.

Direct current is now transferred over very long distances, despite the fact that it must normally be converted to alternating current for final distribution, thanks to techniques established in the 1960s. Direct current is required for some applications, such as electroplating.

  1. Alternating Current: AC stands for alternating current, which is a flow of electric charge that alternates on a regular basis. It starts at zero, increases to a maximum, declines to zero, reverses, reaches a maximum in the opposite direction, returns to the initial number, and so on. The period is the time interval between the attainment of a specific value on two consecutive cycles, the frequency is the number of cycles or periods per second, and the amplitude of the alternating current is the highest value in either direction.

Low frequencies, such as 50 and 60 cycles per second (Hz), are used for residential and commercial electricity, but television uses alternating currents of roughly 100,000,000 cycles per second (100 megahertz), and radar and microwave communication uses frequencies of several thousand megahertz. Cellular phones use frequencies of roughly 1,000 megahertz (1 gigahertz).

Current Density

In a conductor, current density is defined as the rate of charge flow through any cross-section of the conductor. A flow of electrons is commonly thought of as an electric current. Electrons flow out of one end of a battery, via the wire, and into the other end of the battery when two ends of the battery are connected by metal wire. If the magnitude of the current is constant and the direction remains constant, it is considered steady.

The density of current flow in a conductor is referred to as current density. The letter J stands for it. Current Density and its measurement are critical in the science of electromagnetism. The flow of electric charge in amperes per unit area of cross-section, i.e.  A/m2, is the unit of measurement. This is a vector quantity since the magnitude determines the flow direction. A current of electricity that travels through and has charge units per unit time per unit area. It is also measured in a perpendicular direction to the flow of direction.

Formula for Current Density

The formula for Current Density can be given as,

J=IA 

Here,

I= total current flowing in the conductor in Amperes

A= cross sectional area of the conductor in m2

The unit of Current density is A/m2.

Current Density Dimensional Formula

The current density dimensional formula is as follows: 

[M0L-2T0I1] 

Here,

M = Mass

I = Current

L = Length

T = Time

Importance of Current Density

The design of electrical and electronic systems is influenced by current density.

The specified current level has a big impact on circuit performance, and the current density is governed by the dimensions of the conducting parts. For example, despite the lower current demands of smaller devices, there is a tendency toward increasing current densities to achieve higher device counts on ever smaller chip areas as integrated circuits shrink in size.

The conducting region of a wire becomes confined near its surface at high frequencies, increasing the current density in this region. The skin effect is the term for this.

Current densities that are too high have unfavourable implications. Because most electrical conductors have a limited, positive resistance, power is dissipated as heat. To avoid the conductor from melting or burning, the insulating material from failing, or the desirable electrical qualities from altering, the current density must be kept low. The material making the linkages actually moves at high current densities, a phenomenon known as electromigration. Excessive current density in superconductors can provide a strong enough magnetic field to cause the superconductive property to be lost spontaneously.

Current density analysis and observation are also used to investigate the physics underlying the nature of solids, such as metals, semiconductors, and insulators. Many fundamental findings have been explained using a complex theoretical framework.

Ampère’s circuital law (one of Maxwell’s equations) connects current density to magnetic field and includes current density as a key parameter.

Conclusion

Current density is the amount of charge that passes across a unit area of a specified cross section per unit time in electromagnetism. The current density vector is described as a vector whose magnitude is the electric current per cross-sectional area at a particular place in space, and whose direction is the positive charge motion at that point. Electric current density is measured in amperes per square metre A/m2.

faq

Frequently asked questions

Get answers to the most common queries related to the NDA Examination Preparation.

Why is Curie law not valid at low temperature?

Ans :According to the Curie law, the magnetization of a paramagnetic substance is proportional to the applied...Read full

Do ferromagnetic materials obey Curie law?

Ans : As the temperature rises, the susceptibility of ferromagnetic materials decreases in a complex manner....Read full

What happens when the temperature drops below the curie temperature?

Ans :The atoms are aligned and parallel below the Curie temperature, creating spontaneous magnetism; the mate...Read full

What is the Curie-Weiss susceptibility law?

Ans :The Curie-Weiss law states that a ferromagnet’s magnetic susceptibility in the paramagnetic zone i...Read full

What exactly is the diamagnetic material?

Ans :Since a magnetic field creates an induced magnetic field in diamagnetic materials in the opposite direction, it...Read full

Ans :According to the Curie law, the magnetization of a paramagnetic substance is proportional to the applied magnetic field. When the material is heated, however, the situation changes. The relationship is inverted when it is heated, and the magnetization becomes inversely proportional to temperature.

Ans : As the temperature rises, the susceptibility of ferromagnetic materials decreases in a complex manner. After Curies point, a ferromagnetic substance’s susceptibility varies inversely with its absolute temperature. Above its Curie point, ferromagnetic materials obey Curie’s law.

Ans :The atoms are aligned and parallel below the Curie temperature, creating spontaneous magnetism; the material is ferromagnetic. When a material undergoes a phase transition above the Curie temperature, the atoms lose their ordered magnetic moments and the material becomes paramagnetic.

 

Ans :The Curie-Weiss law states that a ferromagnet’s magnetic susceptibility in the paramagnetic zone is greater than the ferromagnet’s Curie temperature threshold. A magnet’s magnetic moment is a property that determines its torque in the presence of an external magnetic field.

 

Ans :Since a magnetic field creates an induced magnetic field in diamagnetic materials in the opposite direction, it repels them. Paramagnetic and ferromagnetic materials, on the other hand, are attracted to magnetic fields.

Crack NEET UG with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the NEET UG Examination including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Best Books for NEET UG 2026 – Physics, Chemistry & Biology
How to Prepare for NEET UG 2026 at Home Without Coaching?
Last 10 Years NEET UG Question Papers – Download NEET UG Previous Year Question Paper with Solutions PDFs
NEET UG 2025 Counselling – Schedule, Dates, Fees, Seat Allotment
NEET UG 2026 Registration Date Extension
NEET UG 2026 Registration Process
NEET UG Answer Key 2025 – Download PDF
NEET UG Eligibility Criteria 2026: Minimum Age, Required Codes, and Attempts
NEET UG Exam Analysis
NEET UG Exam Calendar
NEET UG Exam Information
NEET UG EXAM PATTERN 2026
NEET UG Hall Ticket 2026 – Check Steps to Download
NEET UG Marking Scheme
NEET UG Previous Papers Analysis
NEET UG Registration Fees
NEET UG Results 2025 (OUT): Download Link @neet.nta.nic.in, NEET Score card
NEET UG Syllabus 2026
NEET UG Syllabus 2026 with Chapter-wise Weightage
See all

Related articles

Learn more topics related to Physics
Zeroth law of Thermodynamics

The Zeroth law of thermodynamics states that any system which is isolated from the rest will evolve so as to maximize its own internal energy.

Zener Diode as a Voltage Regulator

Zener diode is a form of diode that enables current to flow in one direction like a typical PN junction diode.

Zener diode

Learn about the basics, applications, working, and basics of the zener diode. It will help you understand the depths of this important device and help solve relevant questions.

Young’s modulus

Young's modulus is a measure of the elasticity or extension of a material when it's in the form of a stress–strain diagram. It is named after Thomas Young.

See all
Access more than

9,257+ courses for NEET UG

Get subscription

Trending Topics

  • NEET Preparation Tips
  • NEET 2024 Preparation Tips
  • How to Prepare for NEET from Class 11?
  • How to Prepare for NEET?
  • NEET 2024
  • NEET Syllabus 2024
  • NEET Question Paper
  • NEET Exam Pattern
  • NEET Notification
  • NEET Exam Calendar
  • NEET Results
  • NEET Eligibility
  • NEET Preparation Books
Download NEET Formulas

NEET Previous Year Question Papers

  • NEET 2022 Question Paper
  • NEET 2021 Question Paper
  • NEET 2020 Question Paper
  • NEET 2019 Question Paper
  • NEET 2018 Question Paper
combat_neetug

Related links

  • NEET Study Materials
  • How Many Attempts for NEET
  • How Many Marks Are Required in NEET for MBBS
  • Living World NEET Questions
  • MBBS Full Form
  • NEET Full Form
  • Physics NEET Syllabus
freeliveclasses_neetug
Download NEET 2023 question paper
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2025 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY