Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

  • CAT 2023
  • Study Materials
  • Notifications
  • CAT Syllabus
  • CAT Mock Test
  • CAT Exam Pattern
  • CAT Question Paper
  • CAT Preparation Books
  • Downloads
  • Important Formulas
  • Eligibility Criteria
CAT 2025 » CAT Study Material » Data Interpretation and Logical Reasoning » Types of Sequences
scholarship_cat

Types of Sequences

The following are some of the most typical examples of sequences: Sequences Based on Arithmetic, Geometric Sequences, Harmonic Sequences ,Fibonacci Numbers.

Table of Content
  •  

One of the foundational tenets of arithmetic is the concept of sequence and series. The term “sequence” refers to an itemised collection of components in which repetitions of any kind are permitted, whereas “series” refers to the total of all elements in the collection. One of the most typical illustrations of a sequence and a series is an arithmetic progression.

  • A list of elements or objects that have been arranged in a sequential manner is an example of what is meant by the term “sequence.”
  • The total of all the terms in a sequence is one way to highly extend the concept of a series. However, there must be a clear connection between each of the elements of the sequence in order for it to be valid.

By applying the formulas to real-world scenarios and finding solutions, one could acquire a deeper comprehension of the foundations. Sequences are extremely comparable to sets, with the key distinction being that, in a sequence, individual terms may recur multiple times but in a different order each time. It is possible for a series to have either a finite or an infinite number of terms, and this determines the length of the sequence. In Mathematics Class 11, students receive an in-depth explanation of this idea. The ideas of sequence and series are going to be dissected in this article with the assistance of definitions, mathematical formulas, and concrete illustrations.

The Difference Between Sequence and Series

A group of numbers or other items that are arranged in a specific order and are then followed by a set of guidelines constitutes a sequence. If the terms in a series are indicated by a1, a2, a3, a4, etc., then the location of the term is indicated by 1, 2, 3, 4, etc.

One way to define a series is according to the number of terms it contains, which results in either a finite or an endless sequence.

If a1, a2, a3, a4, and so on is a sequence, then the series that corresponds to it is provided by

SN = a1+a2+a3 + .. + aN

Note that the nature of the sequence determines whether the series is finite or infinite. The sequence can be finite or infinite.

Different kinds of sequential and serial order

The following are some of the most typical examples of sequences:

  • Sequences Based on Arithmetic
  • Geometric Sequences
  • Harmonic Sequences
  • Fibonacci Numbers

Sequences Based on Arithmetic

An arithmetic sequence is a sequence in which each term is formed by adding or subtracting a specific number from the number that came before it in the sequence.

An arithmetic progression, also known as an arithmetic sequence, is a series of numbers arranged in such a way that the gap in value between each successive term remains the same. The sequence 5, 7, 9, 11, 13, 15, etc. is an example of an arithmetic progression with a difference of 2 in common between each successive number.

Geometric Sequences

A geometric sequence is a type of numerical progression in which each term is arrived at by either multiplying or dividing a specific number with the number that came before it.

In mathematics, a geometric progression, which is also known as a geometric sequence, is a sequence of non-zero numbers in which each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. In other words, each term after the first is derived from the term that came before it. For instance, the number sequence 2, 6, 18, 54,… is an example of a geometric progression with the ratio 3 in common. In the same vein, the numbers 10, 5, 2.5, 1.25,… form a geometric sequence with the common ratio of 1/2.

Quadratic sequences

Sequences of quadratic equations are ordered collections of numbers that conform to a rule that is derived from the sequence n² = 1, 4, 9, 16, 25,… (the square numbers).

In quadratic sequences, the n2 term is invariably present.

In a quadratic sequence, the difference between each term is not equal; yet, the second difference between each term in a quadratic sequence is equal.

Quadratic sequences can alternatively be called quadratic algebraic sequences.

The following are a couple illustrations of quadratic sequences:

To determine that the second difference is +2 by adding the numbers 4, 7, 12, 19, and 28, and to determine by subtracting the numbers 1, -4, -15, 32, and 55 by finding that the second difference is, respectively, and −6

Harmonic Sequences

If the reciprocals of all of the numbers in a sequence form an arithmetic sequence, then we say that the numbers in the sequence are arranged in harmonic sequence.

Fibonacci Numbers

The Fibonacci numbers are a fascinating sequence of numbers that create a sequence that begins with 0 and 1, and where each number in the sequence is acquired by adding the two elements that came before it. The formula for defining sequences is as follows: F0 = 0, F1 = 1, and Fn = Fn-1 + Fn-2 .

Conclusion 

Sequence and series are fundamental to maths. “Sequence” is an itemised collection of components where repetitions are allowed, while “series” is the total of all pieces. An arithmetic progression is a common example of a sequence or series. Sequence is an ordered set of elements or things.

Totaling a series’ words is one technique to expand its meaning. To be valid, the sequence’s elements must be clearly connected. Applying mathematics to real-world circumstances and discovering answers can deepen understanding. Sequences are similar to sets, except individual terms may recur in a different order throughout a sequence. The number of words in a series defines its length.

faq

Frequently asked questions

Get answers to the most common queries related to the CAT Examination Preparation.

What is the difference between a sequence and a series?

Answer: A sequence is a collection of integers arranged in a specific order. A series, on the other hand, is defined...Read full

What are some of the most common sequence types?

Answer: The following are some popular maths sequences: Arithmetic Patt...Read full

What are the differences between finite and infinite sequences and series?

Answer: Sequences: A finite sequence includes the last term, such as a1...Read full

What is the definition of arithmetic progression?

Answer: Series of numbers in which each one differs from the one before it by a fixed amount (e.g. 1, 2, 3, 4, etc.;...Read full

Answer: A sequence is a collection of integers arranged in a specific order. A series, on the other hand, is defined as the sum of a sequence’s elements.

Answer: The following are some popular maths sequences:

Arithmetic Patterns

Geometric Patterns

Harmonic Patterns

Fibonacci Sequences

Answer: Sequences: A finite sequence includes the last term, such as a1, a2, a3, a4, a5, a6,……an. A never-ending infinite sequence, on the other hand, is a1, a2, a3, a4, a5, a6……an….

A finite series is composed of a finite number of terms, such as a1 + a2 + a3 + a4 + a5 + a6 +……an. The number of items in an infinite series is not finite, i.e. a1 + a2 + a3 + a4 + a5 + a6 +……an +…

Answer: Series of numbers in which each one differs from the one before it by a fixed amount (e.g. 1, 2, 3, 4, etc.; 9, 7, 5, 3, etc.).

Crack CAT with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the CAT Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

CAT Eligibility Criteria 2023
CAT Exam Pattern 2023
CAT Result 2022
CAT Syllabus 2023 – CAT Exam Syllabus – Download Latest PDF
IBSAT 2022 Notification
IIFT Notification
MAH CET Notification
MICAT Notification
NMAT Notification
SNAP Notification
TISSNET Notification
Top Colleges in India That Accept CAT Score
XAT Notification
See all

Related articles

Learn more topics related to Data Interpretation and Logical Reasoning
Wilson Remainder Theorem

To reduce huge numbers with regard to a certain modulus and to solve congruences, Wilson's theorem and Fermat's theorem can be employed.

Why Use the Critical Path Method

A brief note on Why use the critical path method, Improves future planning, Facilitates more effective resource management, Helps avoid bottlenecks and many things.

What is Types of Analogy Reasoning

In this lecture we’re going to learn about types of analogy reasoning, the number based/numerical analogy, letter and number based analogy and general knowledge-based analogy, questions based on analogy and many more things.

What is Posterior Probability

A posterior probability, in Bayesian records, is the revised or updated probability of an event happening after taking into account new records. The posterior probability is calculated by updating the prior probability by using Bayes’ theorem. In statistical phrases, the posterior probability is the probability of event A taking place given that event B has taken place.

See all
Access more than

469+ courses for CAT – Optional

Get subscription

Trending Topics

  • CAT Mock Test
  • CAT Question Papers
  • CAT 2021 Question Paper
  • CAT 2020 Question Paper
  • CAT Question Paper 2019 PDF
  • Best Books for CAT Preparation
  • CAT Eligibility Criteria
  • CAT Syllabus
  • CAT Exam Pattern
  • CAT Result
combat_cat

Related links

  • Co-ordinate Geometry applications
  • What Is A Polygon?
  • Uses of a Quadrilateral
  • Algebraic Identities
  • SPSS Full Form
  • Geometric Progression’s Uses
  • Blood Relation Questions
freeliveclasses_cat
CAT 2024 Question Paper
.
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2025 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY