Access free live classes and tests on the app
Download
+
Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA
Login Join for Free
avtar
  • ProfileProfile
  • Settings Settings
  • Refer your friendsRefer your friends
  • Sign outSign out
  • Terms & conditions
  • •
  • Privacy policy
  • About
  • •
  • Careers
  • •
  • Blog

© 2023 Sorting Hat Technologies Pvt Ltd

  • CA Foundation Syllabus
  • CA Foundation Question Papers
  • CA Foundation Books
  • Video Lectures
  • CA Foundation Study Material
  • CA Foundation Preparation Strategy
  • MCQs
CA Foundation Exam June 2023 » CA Foundation Study Material » Statistics » Regression lines
testseries_cafoundation

Regression lines

Regression line is used as a tool to figure out the relation between two variables. Get to know about the least-squares regression line and more right here!

Table of Content
  •  

Introduction

In statistics, a regression line is a tool that is used to analyze the relationship between two variables. There are different types of regression lines, but the most common is the least-squares regression line. This type of regression line is used to find the point of intersection of two regression lines, and to determine the equation for the line. In this blog post, we will discuss how to use the regression line in statistics, step-by-step!

What is a regression line?

A regression line is a mathematical formula that allows us to find the equation of the best-fit line for a set of data points. In other words, it helps us to predict the value of one variable, based on the value of another variable.

Importance of regression line

The importance of the regression line is as follows:

– the regression line is the best linear fit to the data points and therefore can be used to make predictions

– the regression line is the line that reduces the sum of the squared residuals (the difference between the actual and the predicted values)

– the regression line can be used to establish the trend of the data

What is the least-squares regression line?

The least-squares regression line is the line that minimizes the total of the squares of the vertical distances between the data points and the regression line.

It is the line that best fits the data points. 

The equation for the least-squares regression line is

y = a + bx

where:

a is the y-intercept.

b is the slope of the regression line.

 

It can be calculated by the formula

b = (n*sum of squares)/(sum of x squared – n*sum of x)

where:

n is the number of data points.

the sum of squares (SS) = the sum of the differences between squared by the y-values and the mean of the y-values.

the sum of x squared (SX) = the sum of the squared differences of the x-values and the mean of the x-values.

the sum of x (SX) = the sum of the x-values.

If you want to find the equation for the regression line of y on x, the slope is b and the y-intercept is a.

The point of intersection of two regression lines is where the regression lines cut each other at the point. The equation for the point of intersection is

x = (a*y-b*x)/(a-b)

where:

x is the x-coordinate.

y is the y-coordinate.

a is the y-intercept of the regression line of y on x.

b is the slope of the regression line of y on x.

Properties of regression lines

Properties of regression lines are as mentioned below:

– The point of intersection of two regression lines is the best estimate for the population’s mean.

– The regression line of y on x is the line that minimizes the sum of the squares of the vertical distances between each data point and the line.

– The least-squares regression line is the line that minimizes the sum of the squares of the vertical distances between each data point and the line.

When drawing a regression line, it is important to remember the following:

– the regression line will never go through the origin (0, 0)

– the regression line is not the same as the least-squares regression line

– the point of intersection of two regression lines is the best estimate for the population’s mean

Uses of a regression line

The below mentioned are the uses of a regression line

-the regression line is used to find the best fit for the given data. The regression line predicts the expected value of y for a given x.

-the regression line can be used to find the equation of the line. The equation is used to predict the y-values for given x-values.

-the regression line can be used to find the correlation coefficient between the two variables. The coefficient of correlation measures the strength of the relationship connecting the two variables.

-the regression can be used to find the slope of the line

-the least-squares regression line is the regression line that makes the sum of the squares of the vertical distance from each data point to the regression line as small as possible

Conclusion paragraph:

In conclusion, regression lines can be a valuable tool for statisticians. By understanding how to create and interpret them, you can use this information to make better decisions in your research. We hope that this step-by-step guide has helped you understand regression lines and their uses a little better. If you have any questions, please don’t hesitate to reach out to us for help.

faq

Frequently asked questions

Get answers to the most common queries related to the CA Foundation Examination Preparation.

What is the point of intersection of two regression lines?

Ans :The point of intersection is the point where the two regression lines meet. This is also the p...Read full

What is the regression line of y on x?

Ans :The least-squares regression line, or simply the regression line, is a mathematical equation t...Read full

How do I find the regression line?

Ans :The regression line can be found using a variety of methods, such as the least-squares method ...Read full

hat is the least-squares regression line?

Ans :The least-squares regression line, or the linear regression line, is a mathematical equation t...Read full

Why is the least-squares regression line the best fit for the data?

Ans :The least-squares regression line is the best fit for the data because it minimizes the sum of...Read full

Ans :The point of intersection is the point where the two regression lines meet. This is also the point where the best fit for the data is found.

Ans :The least-squares regression line, or simply the regression line, is a mathematical equation that describes the trend of the data. This line is used to predict the value of y based on the value of x.

Ans :The regression line can be found using a variety of methods, such as the least-squares method or the linear interpolation method. However, the most commonly used approach is the least-squares method.

Ans :The least-squares regression line, or the linear regression line, is a mathematical equation that describes the trend of the data. This line is used to predict the value of y based on the value of x.

Ans :The least-squares regression line is the best fit for the data because it minimizes the sum of squared errors. This means that any other regression line will result in a higher sum of squared errors, which means that this regression line provides the best prediction of y based on x.

Crack CA Foundation with Unacademy

Get subscription and access unlimited live and recorded courses from India’s best educators

  • Structured syllabus
  • Daily live classes
  • Ask doubts
  • Tests & practice
Learn more

Notifications

Get all the important information related to the CA Foundation Exam including the process of application, important calendar dates, eligibility criteria, exam centers etc.

Application Process
CA Foundation Exam Pattern 2024
CA Foundation Results(Out) – Result Link at icai.nic.in
CA Foundation Syllabus 2023 – (New & Old)
CA Intermediate Results
Eligibility
Examination Centres
Last Year’s Papers for CA Foundation
Registration Fee for CA Foundation Course
See all

Related articles

Learn more topics related to Statistics
Total and Compound Probability

The article discusses the total probability theorem, the law of total and compound probability, theorems of total and compound probability, total and compound probability theorems ppt. and more.

Time Series Analysis

The article discusses what time series analysis is and looks at the importance of time series analysis. It will provide a time series analysis example.

Time Series

Are you willing to understand the concept of time series? If yes, then read more and know about the role of Time Series in Statistics, Time series models, time-series data, etc.

Theoretical Distributions

What are the various types of probability distributions, including theoretical distribution and its multiple divisions? What are its heads and subheads?

See all
Access more than

1,470+ courses for CA Foundation

Get subscription

Trending Topics

  • Nature of Employment
  • Fixed Capital and Working Capital
  • Demographic Environment
  • Chapter wise Free MCQ test Series
freeliveclasses_ca

Related links

  • CA Intermediate Subscription
  • CA Intermediate Free Trial
  • CA Intermediate AIMT
  • Demo Lectures for Yoddha Warm-up Batch
  • CA Intermediate Store
  • CA Foundation Study Materials
  • CA Intermediate Batches
testseries_ca
Subscribe Now
.
Company Logo

Unacademy is India’s largest online learning platform. Download our apps to start learning


Starting your preparation?

Call us and we will answer all your questions about learning on Unacademy

Call +91 8585858585

Company
About usShikshodayaCareers
we're hiring
BlogsPrivacy PolicyTerms and Conditions
Help & support
User GuidelinesSite MapRefund PolicyTakedown PolicyGrievance Redressal
Products
Learner appLearner appEducator appEducator appParent appParent app
Popular goals
IIT JEEUPSCSSCCSIR UGC NETNEET UG
Trending exams
GATECATCANTA UGC NETBank Exams
Study material
UPSC Study MaterialNEET UG Study MaterialCA Foundation Study MaterialJEE Study MaterialSSC Study Material

© 2025 Sorting Hat Technologies Pvt Ltd

Unacademy
  • Goals
    • AFCAT
    • AP EAMCET
    • Bank Exam
    • BPSC
    • CA Foundation
    • CAPF
    • CAT
    • CBSE Class 11
    • CBSE Class 12
    • CDS
    • CLAT
    • CSIR UGC
    • GATE
    • IIT JAM
    • JEE
    • Karnataka CET
    • Karnataka PSC
    • Kerala PSC
    • MHT CET
    • MPPSC
    • NDA
    • NEET PG
    • NEET UG
    • NTA UGC
    • Railway Exam
    • SSC
    • TS EAMCET
    • UPSC
    • WBPSC
    • CFA

Share via

COPY