to enroll in courses, follow best educators, interact with the community and track your progress.
8 lessons,
56m 1s
Enroll
26
Practice Questions: Part 5
3 plays

More

U
1. Abhishek Khurana 6 times 99 percentiler in CAT MBA from NMIMS 2009-2011 8 years of teaching experience

2. LOGARITHMS

3. Miscellaneous Examples Example 25: If p2 x Q3 = 1000 and P2n x Qs, = 100 Ren, then find the value of log1o R. Solution: P2x Q3-1000 10A3 (paxQ3 ) n# 102 Ren Taking log on both sides (3n-2) log 10-6n log R 3n-2-6n log R log R-1/2-1/3n

4. Miscellaneous Examples Example 26: If 2logx+41ogy+ 610gs122 1. 2, then the minimum possible value of (x2y+yz+ z2x) is Solution: loga logsy log22 logs(xyz)#2 2 (xyz22 64 (ryz) xyz 28 (xyz)s 2 512

5. Miscellaneous Examples (x2 y). (ya z) (za x )28.8.8. Applying AM a GM we get that xy+yz+ 23 xy yazz2x)13 xy yz+2x 2 24 Minimum possible valued (x2y +y2z+ z2x) 24.

6. Miscellaneous Examples Example 27: log2ax log2bc + logo x loggC = 9, where 'a, 'band'c' are positive real numbers. If axbxc 4096, then what is the value of (log2a)+ Solution: Let 109:a x, log,b # y and 109: c z We have, a x b x c= 4096 2 (xtytz)=212 xtyz- 12