Gravity Newton's Law of Gravitation Kepler's Laws of Planetary Motion Gravitational Fields

Newton's Law of Gravitation m2 There is a force of gravity between any pair of objects anywhere. The force is proportional to each mass and inversely proportional to the square of the distance between the two objects. Its equation is: G m, m2 2 The constant of proportionality is G, the universal gravitation constant. G 6.67 10-11 N.m2/kg2. Note how the units of G all cancel out except for the Newtons, which is the unit needed on the left side of the equation.

Gravity Example How hard do two planets pull on each other if their masses are 1.23x 1026 kg and 5.21 1022 kg and they 230 million kilometers apart? G m m2 2 (6.67 10-11 N-m2/kg2) (1.23 1026 kg) (5.21 1022 kg) (230 103 106 m)2 8.08 1015 N This is the force each planet exerts on the other. Note the denominator is has a factor of 103 to convert to meters and a factor of 106 to account for the million. It doesn't matter which way or how fast the planets are moving.

3rd Law: Action-Reaction In the last example the force on each planet is the same. This is due to to Newton's third law of motion: the force on Planet 1 due to Planet 2 is just as strong but in the opposite direction as the force on Planet 2 due to Planet 1. The effects of these forces are not the same, however, since the planets have different masses For the big planet: a (8.08 1015 N) (1.23 1026 kg) - 6.57 10-11 m/s2. For the little planet: a - (8.08 1015 N)/ (5.21 1022 kg) = 1.55 . 10-7 m/s2. 8.08 1015 N 8.08 1015 N 5.21 1022 kg 1.23 1026 kg

Inverse Square Law The law of gravitation is called an inverse square law because the magnitude of the force is inversely proportional to the square of the separation. If the masses are moved twice as tween is cut by a factor the force is nine times weaker G m m2 G= 2 What if each mass and the separation were all quadrupled? answer no change in the force

Calculating the Gravitational Constant In 1798 Sir Henry Cavendish suspended a rod with two small masses (red) from a thin wire Two larger mass (green) attract the small masses and cause the wire to twist slightly, since each force of attraction produces a torque in the same direction. By varying the masses and measuring the separations and the amount of twist, Cavendish was the first to calculate G. Since G is only 6.67 1011 N m2/kg2, the measurements had to be very precise

Calculating the mass of the Earth Knowing G, we can now actually calculate the mass of the Earth. All we do is write the weight of any object in two different ways and equate them. Its weight is the force of gravity between it and the Earth, which is Fo in the equation below. ME is the mass of the Earth, Rg is the radius of the Earth, and m is the mass of the object. The object's weight can also be written as mg. G ME m RE2 2 -mg The m's cancel in the last equation. g can be measured experimentally; Cavendish determined G's value; and RE can be calculated at 637 10 m (see nexi slide M is the only unknowu Solving for ME we have: 2 5.98 1024 kg

Calculating the radius of the Earth This is similar to the way the Greeks approximated Earth's radius over 2000 years ago: Red pole blocks incoming solar rays and makes a shadow. 0 is measured RE The green pole is on the same meridian as the red one, but it casts no shadow at this latitude. s is the measured distance between the cities in which the poles stand Earth is also the central angle of the arc. S-RE RE S/0 6.37 106 m

Net Force Gravity Problem 3x106 kg 3 asteroids are positioned as shown, forming a right triangle. Find the net force on the 2.5 million kg asteroid. 40 m 2.7x 106 kg 2.5x 106 kg 60 m Steps: 1. Find each force of gravity on it and draw in the vectors 2. Find the angle at the lower right. 3. One force vector is to the left; break the other one down into components 4. Find the resultant vector: magnitude via Pythagorean theorem; direction via inverse tangent answer: 0.212 N at 14.6 above horizontal (N of W)

Falling Around the Earth Newton imagined a cannon ball fired horizontally from a mountain top at a speed V. In a time t it falls a distance y = 0.5 gt2 while moving horizontally a distance x = vt if fired fast enough (about 8 km/s), the Earth would curve downward the same amount the cannon ball falls downward. Thus, the projectile would never hit the ground, and it would be in orbit. The moon "falls" around Earth in the exact same way but at a much greater altitude. continued on next slide

Necessary Launch Speed for Orbit R- Earth's radius t- small amount of time after launch x= horiz. distance traveled in time t y vertical distance fallen in time t x2+ 2 (Ry)2 =R2 + 2R y + y2 Since y < R (If t is very small, the red segment is nearly vertical.) v2Rg. So, v (6.37 109 m 9.8 m/s)'" v 7900 m/s

Early Astronomers In the 2nd century AD the Alexandrian astronomer Ptolemy put forth a theory that Earth is stationary and at the center of the universe and that the sun, moon, and planets revolve around it. Though incorrect, it was accepted for centuries. In the early 1500's the Polish astronomer Nicolaus Copernicus boldly rejected Ptolemy's geocentric model for a heliocentric one. His theory put the sun stated that the planets revolve around the sun in circular orbits and that Earth rotates daily on its axis. Archive PhotosfAmerican Stock In the late 1500's the Danish astronomer Tycho Brahe made better measurements of the planets and stars than anyone before him. The telescope had yet to be invented. He believed in a Ptolemaic-Coperican hybrid model in which the planets revolve around the sun, which in turn revolves around the Earth. Culver Pictures, Inc

Kepler's Laws of Planetary Motion Here is a summary of Kepler s 3 Laws: 1. Planets move around the sun in elliptical paths with the sun at one focus of the ellipse. 2. While orbiting, a planet sweep out equal areas in equal times 3. The square of a planet's period (revolution time) is proportional to the cube of its mean distance from the sun: These laws apply to any satellite orbiting a much larger body.

Kepler's Third Law The square of a planet 's period is proportional to the cube of its mean distance from the sun: T2 oc R3 Assuming that a planet's orbit is circular (which is not exactly correct but is a good approximation in most cases), then the mean distance from the sun is a constant--the radius. F is the force of gravity on the planet. Fis also the centripetal force. If the orbit is circular, the planet's speed is constant, and v = 2 R/T. Therefore, G M m 2 Cancel m's and simplify: 4T2 R 2 GM Planet Sun Rearrange: T2 GM Since G, M, and are constants. T2oc R3

Third Law Example One astronomical unit (AU) is the distance between Earth and the sun (about 93 million miles). Jupiter is 5.2 AU from the sun. How long is a Jovian year? answer: Kepler's 3rd Law says T2 oc A3, so T2 k R3, where k is the constant of proportionality. Thus, for Earth and Jupiter we have: k's value matters not; since both planets are orbiting the same central body (the sun), k is the same in both equations. TE 1 year, and R/ RE = 5.2, so dividing equations: Ti2 R13 11.9 years continued on next slide

Third Law Example (cont.) What is Jupiter's orbital speed? answer: Since it's orbital is approximately circular, and it's speed is approximately constant: Jupiter is 5.2 AU from the sun (5.2 times farther than Earth is) T (5.2) (93 106 miles 1 da 24 hours 2 ear 11.9 years 365 days 29,000 mph Jupiter's period from last slide This means Jupiter is cruising through the solar system at about 13,000 m/s! Even at this great speed, though, Jupiter is so far away that when we observe it from Earth, we don't notice it's motion Planets closer to the sun orbit even faster. Mercury, the closest planet, is traveling at about 48,000 m/s!

Uniform Gravitational Fields We live in what is essentially a uniform gravitational field. This means that the force of gravity near the surface of the Earth is pretty much constant in magnitude and direction. The green lines are gravitational field lines. They show the direction of the gravitational force on any object in the region (straight down). In a uniform field, the lines are parallel and evenly spaced. Near Earth's surface the magnitude of the gravitational field is 9.8 N/kg. That is, every kilogram of mass an object has experiences 9.8 N of force. Since a Newton is a kilogram meter per second squared, I N/kg = 1 m/s2. So, the gravitational field strength is just the acceleration due to gravity, g. continued on next slide Earth's surface

Uniform Gravitational Fields (cont.) A 10 kg mass is near the surface of the Earth. Since the field strength is 9.8 N/kg, each of the ten kilograms feels a 9.8 N force, for a total of 98 N. So, we can calculate the force of gravity by multiply mass and field strength. This is the same as calculating its weight (W-mg). 10k 98 N Earth's surface

5 lessons,

42m 11s

Enroll

88

✕Download

Rohit Kumar Yadav

Author||Blogger||Photographer||Poet

Unacademy user

Bharat Kumar

a year ago

Hi Ashu, very well elaborated the Study Plan

1

Reply

Ashu Chaudhary

a year ago

Thanks dear :)

Bharat Kumar

a year ago

Hi Ashu, do you want to work with us and teach on our Youtube channel? If you are interested then mail us at
studylabs21@gmail.com