Company Logo

Module 4 | HCF & LCM | Introduction & Agenda

Lesson 1 of 24 • 13 upvotes • 8:24 mins

Anupam Mishra

In this session we start of a new Module that will cater to Concepts related to HCF & LCM.

1

Module 4 | HCF & LCM | Introduction & Agenda

8:24 mins

2

Module 4 | HCF & LCM | HCF & LCM via Venn Diagrams

13:14 mins

3

Module 4 | HCF & LCM | HCF & LCM of Fractions

10:20 mins

4

Module 4 | HCF & LCM | No. of 2-number sets for a given LCM.

11:36 mins

5

Module 4 | HCF & LCM | Relationship b/w Product of Numbers and HCF & LCM.

10:38 mins

6

Module 4 | HCF & LCM | Case of inverse nature of relationship b/w HCF & LCM.

13:34 mins

7

Module 4 | HCF & LCM | Largest/smallest possible values of LCM & HCF if Prod(A,B) is given.

9:37 mins

8

Module 4 | HCF & LCM | The Euclidean Division Algorithm

8:48 mins

4

Module 4 | HCF & LCM | No. of 2-number sets for a given LCM.

11:36 mins

5

Module 4 | HCF & LCM | Relationship b/w Product of Numbers and HCF & LCM.

10:38 mins

9

Module 4 | HCF & LCM | Understanding the concept behind the Euclidean Division Algorithm.

12:06 mins

10

Module 4 | HCF & LCM | Relationship b/w x, y with (x+y), (x-y), given that x & y are co-prime.

9:55 mins

11

Module 4 | HCF & LCM | Application of Relationship b/w x, y with (x+y), (x-y).

10:06 mins

12

Module 4 | HCF & LCM | HCF or LCM (na, nb) = n x HCF(a,b) or LCM (a, b) respectively.

8:04 mins

6

Module 4 | HCF & LCM | Case of inverse nature of relationship b/w HCF & LCM.

13:34 mins

13

Module 4 | HCF & LCM | No. of HCF values possible for numbers of the form, N & N+15.

8:07 mins

14

Module 4 | HCF & LCM | No. of HCF values possible for numbers of the form: N, N+10, N+25, N+30...

8:57 mins

15

Module 4 | HCF & LCM | Applications 1

10:48 mins

9

Module 4 | HCF & LCM | Understanding the concept behind the Euclidean Division Algorithm.

12:06 mins

16

Module 4 | HCF & LCM | Applications 2

8:25 mins

17

Module 4 | HCF & LCM | Applications 3

8:52 mins

13

Module 4 | HCF & LCM | No. of HCF values possible for numbers of the form, N & N+15.

8:07 mins

18

Module 4 | HCF & LCM | Applications 4

8:06 mins

12

Module 4 | HCF & LCM | HCF or LCM (na, nb) = n x HCF(a,b) or LCM (a, b) respectively.

8:04 mins

No internet connection