Home
SELF STUDY
BrowsePracticeTestsPlaylistDoubts & solutionsFree live classesOther courses

Newtonian Mechanics

Quick practice

Question 1 of 5

The coordinates and momenta x_{i}, p_{i}(i=1,2,3) of a particle satisfy the canonical Poisson bracket relation \left\{x_{i}, p_{i}\right\}=\delta_{i j}. If C_{1}=x_{2} p_{3}+x_{3} p_{2}   and  C_{2}=x_{1} p_{2}-x_{2} p_{1} are constants of motion, and if \mathrm{C}_{3}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\mathrm{x}_{1} \mathrm{p}_{3}+\mathrm{x}_{3} \mathrm{p}_{1},   then 

A

\left\{\mathrm{C}_{2}, \mathrm{C}_{3}\right\}=-\mathrm{C}_{1}   and \left\{\mathrm{C}_{3}, \mathrm{C}_{1}\right\}=\mathrm{C}_{2}

B

\left\{\mathrm{C}_{2}, \mathrm{C}_{3}\right\}=\mathrm{C}_{1}   and \left\{\mathrm{C}_{3}, \mathrm{C}_{1}\right\}=\mathrm{C}_{2}

C

\left\{\mathrm{C}_{2}, \mathrm{C}_{3}\right\}=-\mathrm{C}_{1}   and \left\{\mathrm{C}_{3}, \mathrm{C}_{1}\right\}=-\mathrm{C}_{2}

D

\left\{\mathrm{C}_{2}, \mathrm{C}_{3}\right\}=\mathrm{C}_{1}   and \left\{\mathrm{C}_{3}, \mathrm{C}_{1}\right\}=-\mathrm{C}_{2}

Get unlimited practice with CSIR-UGC NET subscription

pick

Boost your performance with adaptive practice tests

pick

Practice every concept in the syllabus

pick

Compare your speed and accuracy with your peers

pick

Download the app and practice on the go