Home
SELF STUDY
BrowsePracticeTestsPlaylistDoubts & solutionsFree live classesOther courses

Mathematical Methods: Basics

Quick practice

Question 1 of 5

The Laurent series expansion of the function f(z)=e^{z}+e^{1 / z} about z=0 is given by

A

\sum_{n=-0}^{\infty} \left(z^{n}+\frac{1}{z^{n}}\right) \frac{1}{n !}   for all  0<|z|<\infty

B

\sum_{n=-0}^{\infty}\left(z^{n}+\frac{1}{z^{n}}\right) \frac{1}{n !}   only if  0<|z|<1

C

\sum_{n=-\infty}^{\infty}\frac{z^{n}}{n !}   for all |z|<\infty

D

\sum_{n=-\infty}^{\infty} \frac{z^{n}}{n !}   only if |z|<1

Concepts

Get unlimited practice with CSIR-UGC NET subscription

pick

Boost your performance with adaptive practice tests

pick

Practice every concept in the syllabus

pick

Compare your speed and accuracy with your peers

pick

Download the app and practice on the go