LAACH/SS/Page 1

LAACH

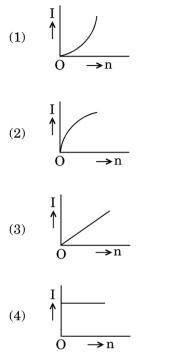
This Booklet contains **24** pages.

Do not open this Test Booklet until you are asked to do so.

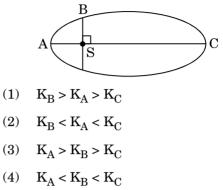
Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet. take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
- 2. The test is of **3 hours** duration and this Test Booklet contains **180** questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are 720.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **SS**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is *not* permissible on the Answer Sheet.


Name of the Candidate (in Capitals) :	
Roll Number : in figures	
: in words	
Centre of Examination (in Capitals) :	
Candidate's Signature :	Invigilator's Signature :
Facsimile signature stamp of	
Centre Superintendent :	

Enalish


Test Booklet Code

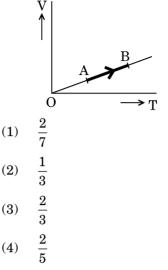
 A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?

- 2. A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is
 - (1) 9
 - (2) 20
 - (3) 11
 - (4) 10
- 3. A carbon resistor of $(47 \pm 4.7) \text{ k}\Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
 - (1) Green Orange Violet Gold
 - $(2) \quad Yellow-\ Green-Violet-Gold$
 - (3) Yellow Violet Orange Silver
 - (4) Violet Yellow Orange Silver

The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_A , K_B and K_C , respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

- 5. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct ?
 - (1) 'g' on the Earth will not change.
 - (2) Time period of a simple pendulum on the Earth would decrease.
 - (3) Walking on the ground would become more difficult.
 - (4) Raindrops will fall faster.
 - A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (K_t) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
 - (1) 2:5
 - (2) 10:7
 - (3) 5:7
 - (4) 7:10
- 7. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere ?
 - (1) Angular momentum
 - (2) Rotational kinetic energy
 - (3) Moment of inertia
 - (4) Angular velocity

6.

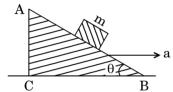

- 8. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
 - (1) small focal length and small diameter
 - (2) large focal length and large diameter
 - (3) large focal length and small diameter
 - (4) small focal length and large diameter
- 9. Unpolarised light is incident from air on a plane surface of a material of refractive index 'µ'. At a particular angle of incidence 'i', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?

(1)
$$i = \tan^{-1}\left(\frac{1}{\mu}\right)$$

(2) $i = \sin^{-1}\left(\frac{1}{\mu}\right)$

- (3) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
- (4) Reflected light is polarised with its electric vector parallel to the plane of incidence
- 10. In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - $(1) \quad 1{\cdot}7 \ mm$
 - (2) $2 \cdot 1 \text{ mm}$
 - (3) 1·9 mm
 - (4) 1·8 mm

The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is


12. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is

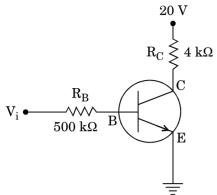
- (1) 16 cm
- (2) 12.5 cm
- (3) 8 cm
- $(4) \quad 13{\cdot}2\ cm$
- **13.** The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
 - (1) 12.5%
 - (2) 6.25%
 - (3) 20%
 - (4) 26.8%
 - **1.** At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere ? (Given :

Mass of oxygen molecule (m) = 2.76×10^{-26} kg Boltzmann's constant k_B = 1.38×10^{-23} J K⁻¹)

- $(1) \quad 1{\cdot}254 \times 10^4 \ \mathrm{K}$
- (2) $5.016 \times 10^4 \text{ K}$
- $(3) \quad 8{\cdot}360\times 10^4 \ \mathrm{K}$
- (4) $2.508 \times 10^4 \text{ K}$

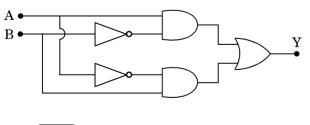
- 15. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field E . Due to the force q E, its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
 - (1) 1.5 m/s, 3 m/s
 - (2) 1 m/s, 3.5 m/s
 - (3) 1 m/s, 3 m/s
 - (4) 2 m/s, 4 m/s
- 16. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is

- (1) $a = g \tan \theta$
- (2) $a = g \cos \theta$
- (3) $a = \frac{g}{\sin \theta}$


(4)
$$a = \frac{g}{\operatorname{cosec} \theta}$$

- 17. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm. The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm, the correct diameter of the ball is
 - $(1) \quad 0{\cdot}529~cm$
 - (2) 0.053 cm
 - (3) 0.525 cm
 - (4) 0.521 cm
- 18. The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} 6\hat{k}$ at (2, 0, -3), about the point (2, -2, -2), is given by

(1)	-7i - 4j - 8k
(2)	$-7\hat{i}-8\hat{j}-4\hat{k}$
(3)	$-4\hat{i}-\hat{j}-8\hat{k}$
(4)	$-8\hat{i} - 4\hat{j} - 7\hat{k}$


- An em wave is propagating in a medium with a velocity V = V î . The instantaneous oscillating electric field of this em wave is along +y axis.
 Then the direction of oscillating magnetic field of the em wave will be along
 - (1) -x direction
 - (2) y direction
 - (3) + z direction
 - (4) z direction
- 20. The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1) 13.89 H
 - (2) 1·389 H
 - $(3) \quad 138{\cdot}88 \ H$
 - $(4) \quad 0{\cdot}138 \; H$
- 21. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
 - (1) 36 cm towards the mirror
 - (2) 30 cm towards the mirror
 - (3) 36 cm away from the mirror
 - (4) 30 cm away from the mirror
- 22. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1) zero
 - (2) 30°
 - (3) 45°
 - (4) 60°

23. In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

- (1) $I_B = 40 \ \mu A, \ I_C = 5 \ mA, \ \beta = 125$
- (2) $I_B = 20 \ \mu A, \ I_C = 5 \ mA, \ \beta = 250$
- (3) $I_B = 25 \ \mu A, \ I_C = 5 \ mA, \ \beta = 200$
- (4) $I_B = 40 \ \mu A$, $I_C = 10 \ mA$, $\beta = 250$
- 24. In a p-n junction diode, change in temperature due to heating

 - (2) does not affect resistance of p-n junction
 - (3) affects only forward resistance
 - (4) affects only reverse resistance
- 25. In the combination of the following gates the output Y can be written in terms of inputs A and B as

- (1) A + B
- (2) $\overline{\mathbf{A} \cdot \mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$
- (3) A. \overline{B} + \overline{A} . B

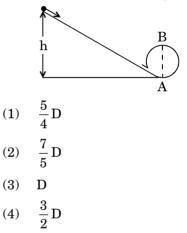
A.B

The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4}\lambda_0$, the power radiated by it becomes nP. The value of n is

(1)
$$\frac{81}{256}$$

(2) $\frac{256}{81}$
(3) $\frac{4}{3}$
(4) $\frac{3}{4}$

- 27. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
 - (1) F
 - (2) 4 F
 - $(3) \quad 6 F$
 - (4) 9 F
- 28. A sample of 0.1 g of water at 100°C and normal pressure $(1.013 \times 10^5 \text{ Nm}^{-2})$ requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is
 - (1) 84·5 J
 - (2) $42 \cdot 2 J$
 - (3) 208.7 J
 - $(4) \ \ 104{\cdot}3\ J$
- **29.** A small sphere of radius 'r' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
 - (1) r^4
 - (2) r^5
 - (3) r^2
 - (4) r^3


(4)

- 30. A metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
 - $(1) \quad 11{\cdot}32 \; A$
 - (2) 14.76 A
 - $(3) \quad 5{\cdot}98 \; A$
 - (4) 7·14 A
- 31. An inductor 20 mH, a capacitor 100 μ F and a resistor 50 Ω are connected in series across a source of emf, V = 10 sin 314 t. The power loss in the circuit is
 - $(1) \ \ 1{\cdot}13 \ W$
 - $(2) \quad 2{\cdot}74 \; W$
 - $(3) \quad 0.43 \text{ W}$
 - $(4) \quad 0.79 \ W$
- 32. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
 - (1) the induced electric field due to the changing magnetic field
 - (2) the lattice structure of the material of the rod
 - (3) the magnetic field
 - (4) the current source
- 33. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is
 - $(1) \quad 500 \ \Omega$
 - $(2) \quad 250 \ \Omega$
 - (3) 25 Ω
 - (4) 40 Ω

- A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 300 m/s
 - (2) 350 m/s
 - (3) 339 m/s
 - (4) 330 m/s
- **35.** The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
 - (1) inversely proportional to the distance between the plates.
 - (2) proportional to the square root of the distance between the plates.
 - (3) linearly proportional to the distance between the plates.
 - (4) independent of the distance between the plates.
 - A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s^2 at a distance of 5 m from the mean position. The time period of oscillation is
 - $(1) \quad 1 \ s$
 - (2) 2 s
 - $(3) \quad \pi \ s$
 - $(4) \quad 2\pi \; s$
- **37.** An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
 - (1) equal
 - (2) 10 times greater
 - (3) 5 times greater
 - (4) smaller

- **38.** An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \stackrel{\circ}{i} (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \stackrel{\circ}{i} (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is
 - $(1) \quad \lambda_0$
 - $(2) \quad \lambda_0 \, t$
 - $\begin{array}{ll} (3) & \lambda_0 \left(1+\frac{eE_0}{mV_0}t\right) \\ (4) & \frac{\lambda_0}{\left(1+\frac{eE_0}{mV_0}t\right)} \end{array} \end{array}$
- **39.** The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 1:-2
 - $(2) \quad 2:-1$
 - (3) 1:-1
 - (4) 1:1
- 40. When the light of frequency 2v₀ (where v₀ is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v₁. When the frequency of the incident radiation is increased to 5v₀, the maximum velocity of electrons emitted from the same plate is v₂. The ratio of v₁ to v₂ is
 - (1) 2:1
 - (2) 4:1
 - (3) 1:4
 - (4) 1:2
- **41.** For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
 - (1) 15
 - (2) 30
 - (3) 10
 - (4) 20

- Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
 - (1) $W_A > W_C > W_B$
 - $(2) \quad W_B > W_A > W_C$
 - $(3) \quad \mathrm{W}_\mathrm{A} > \mathrm{W}_\mathrm{B} > \mathrm{W}_\mathrm{C}$
 - $(4) \quad W_{\rm C} > W_{\rm B} > W_{\rm A}$
- **43.** A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

44. Which one of the following statements is *incorrect* ?

- (1) Coefficient of sliding friction has dimensions of length.
- $(2) \quad \mbox{Frictional force opposes the relative motion}.$
- (3) Limiting value of static friction is directly proportional to normal reaction.
- (4) Rolling friction is smaller than sliding friction.
- **45.** A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
 - (1) **0**·4
 - (2) **0**·8
 - (3) 0.25
 - $(4) \quad 0.25$

46.	 The similarity of bone structure in the forelimbs of many vertebrates is an example of (1) Adaptive radiation (2) Convergent evolution 	52.		umn I w :	-		he c	umn I with those in orrect option given		
	 (3) Analogy (4) Homology 		a.	Glyc	osuria	i.		umulation of uric in joints		
47.	In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels ?		b.	Gout	t	ii.	Mass of crystallised salts within the kidney			
	 Amoebiasis Ringworm disease A i i 		c.	Rena	al calculi	iii.		ammation in neruli		
	(3) Ascariasis(4) Elephantiasis		d.		nerular nritis	iv.	Pres urin	ence of glucose in e		
48.	Conversion of milk to curd improves its			a	b	с	d			
	nutritional value by increasing the amount of		(1)	iv	i	ii	ii	i		
	 Vitamin E Vitamin B₁₂ 		(2)	ii	iii	i				
	12						iv			
	(3) Vitamin A		(3)	i	ii	iii	iv	7		
49.	(4) Vitamin DWhich of the following characteristics represent		(4)	iii	ii	iv	i			
40.	'Inheritance of blood groups' in humans ?	53.	Mat	ch the	e items gi	ven i	n Col	umn I with those in		
	a. Dominance				-			orrect option given		
	b. Co-dominance		below :							
	c. Multiple allele				mn I			Column II		
	d. Incomplete dominance									
	e. Polygenic inheritance			(r un	ection)			(Part of Excretory System)		
	(1) a, c and e			T T1 /	<i>6</i> 11			C C		
	(2) b, d and e		a.	Ultra	afiltration	n	i.	Henle's loop		
	(3) a, b and c		b.		centration	ı	ii.	Ureter		
	(4) b, c and e			of ur	rine					
50.	Among the following sets of examples for divergent evolution, select the <i>incorrect</i> option :		c.	Tran urin	nsport of e		iii.	Urinary bladder		
	(1) Eye of octopus, bat and man		d.	Stor	age of uri	ne	iv.	Malpighian		
	(2) Brain of bat, man and cheetah				-			corpuscle		
	(3) Heart of bat, man and cheetah						v.	Proximal		
	(4) Forelimbs of man, bat and cheetah							convoluted tubule		
51.	Which of the following is <i>not</i> an autoimmune			a	b	с	d			
	disease ?		(1)	v	iv	i	ii			
	(1) Vitiligo									
	(2) Alzheimer's disease		(2)	v	iv	i	ii			
	(3) Rheumatoid arthritis		(3)	iv	i	ii	ii	i		
	(4) Psoriasis		(4)	iv	v	ii	ii	i		

	(2)	is an IUD.		(1)	Parie	etal cells	5			
	(3)	increases the concentration of estrogen and		(2)		et cells				
		prevents ovulation in females.		(3)		ous cells				
	(4)	blocks estrogen receptors in the uterus,				f cells				
		preventing eggs from getting implanted.		(4)	Unie	r cens				
			59.	Mat	ch the	items g	iven in	Column I with those in		
55.		amnion of mammalian embryo is derived				I and s	elect the	e <i>correct</i> option given		
	from	ectoderm and endoderm		belo	w:					
	(1)				Colu	mn I		Column II		
	(2) (3)	mesoderm and trophoblast endoderm and mesoderm		a.	Fibri	nogen	i.	Osmotic balance		
	(3)	ectoderm and mesoderm		b.	Glob	ulin	ii.	Blood clotting		
	(4)	ectoderini and mesoderini		c.	Albu	min	iii.	Defence mechanism		
56.	The	difference between spermiogenesis and			a	b	с			
	sper	miation is		(1)	u ii	iii	i			
	(1)	In spermiogenesis spermatozoa are formed,		(2)	i	iii	ii			
		while in spermiation spermatozoa are released from sertoli cells into the cavity of		(3)	i	ii	iii			
		seminiferous tubules.		(4)	iii	ii	i			
	(2)		60.	Calcium is important in skeletal muscle contraction because it (1) prevents the formation of bonds between						
	(3)			(2)	filam detao	the myosin cross bridges and the actin filament. detaches the myosin head from the actin				
	(4)	In spermiogenesis spermatids are formed,			filam	ient.				
	(-)	while in spermiation spermatozoa are formed.		(3)	activ it.	activates the myosin ATPase by binding to it.				
				(4)		-		remove the masking of		
57.	Hori	nones secreted by the placenta to maintain			activ	e sites o	n actin i	for myosin.		
	preg	mancy are	61.	Whi	ch of	the f	following	g is an occupational		
	(1)	hCG, progestogens, estrogens,		resp	oirator	y disord	er ?			
		glucocorticoids		(1)	Emp	hysema				
	(2)	hCG, hPL, progestogens, estrogens		(2)	Botu	lism				
	(3)	hCG, hPL, estrogens, relaxin, oxytocin		(3)	Silico	osis				
	(4)	hCG, hPL, progestogens, prolactin		(4)	Anth	racis				

58.

Which of the following gastric cells indirectly

help in erythropoiesis?

The contraceptive 'SAHELI'

is a post-coital contraceptive.

54.

(1)

62.	Match the items given in Column I with those in Column II and select the <i>correct</i> option given below :					67.	7. AGGTATCGCAT is a sequence from the coord strand of a gene. What will be the correspond sequence of the transcribed mRNA ?						-		
		Colu	mn I			Column	II		(1)				Jeu II		
	a.	Eutr	ophicati	on	i.	UV-B rad	diation		(1) (2)	UCCAUAGCGUA ACCUAUGCGAU					
	b.	Sani	tary land	dfill	ii.	Deforest	ation		(2)		TUTCG				
	c.	Snov	w blindne	ess	iii.	Nutrient					JAUCO				
						enrichme	ent		(4)	AGGG	JAUCU	rCAU			
	d.	Jhur	n cultiva	tion	iv.	Waste di	sposal	68.	A woman has an X-linked condition on one of her						f her
		a	b	С		d				chromo		This	ch	romosome can	be
	(1)	i	ii	iv		iii				erited b	-				
	(2)	iii	iv	i		ii			(1)		sons an	-	-	S	
	(3)	i	iii	iv		ii			(2)		grandcl	nildren	1		
	(4)	ii	i	iii		iv			(3)	Only					
63.	Whi	ch d	one of	the	e f	ollowing	population		(4)	Only	daught	ers			
							l science for	69.	Mat	ch the	items g	iven ir	n Co	lumn I with tho	se in
	the production of antibiotics ?							and s	elect t	he <i>c</i>	orrect option g	given			
	(1)		nsalism sitism						belo						
	(2) (3)									Colun	ın I			Column II	
	(3) Mutualism(4) Commensalism					a.	Prolif	erative	Phase	i.	Breakdown of				
												endometrial lining			
64.			rt of pop ack"?	opy pl	ant	is used to	o obtain the		b.	Second	tory Ph		ii.	Follicular Phas	
	(1)	Leav									-				e
	(1) (2)	Root							c.	Mens	truation	n	111.	Luteal Phase	
	(3)	Late								a	b	С			
	(4)	Flow							(1)	iii	i	ii			
~					0				(2)	ii	iii	i			
65.		U	011			a country,			(3)	i	iii	ii			
	(1)		reproduc reproduc			iduals.	e less than		(4)	iii	ii	i			
	(2)	-	oductive		and		reproductive	70.	All o	of the fo	ollowing	g are p	art o	f an operon <i>exce</i>	pt
	(\mathbf{n})			-		n number.			(1)	a proi	noter				
	(3)		oductive -reprodu				ss than the		(2)	an en	hancer				
	(4)	-	-				e more than		(3)	structural genes					
		-	reproduc						(4)	an op	erator				
66.	Δ11	of th	e follow	ving (aro	included	in 'Ex-situ	71.	Acco	ording	to Hug	o de V	Vries	, the mechanis	m of
00.			ion' excep		are	menuueu	III IIX-SItu		evol	ution is	5				
	(1)	Seed	l banks						(1)	Minor	mutat	ions			
	(2)	Bota	nical gai	rdens					(2)	Phene	otypic v	ariatio	ons		
	$\langle 0 \rangle$	Sacr	ed grove	e					(3)	Salta	ion				
	(3)	Dati	eu grove	G					(0)	Salla	JOIL				

72.		resents		ing con	ditio	options correctly ns in asthma and	75.		ch of the following is an amino acid derived mone ?
	-	•	na, respe	-		2		(1)	
	(1)		eased mmatio	respira n of bro	v	surface; les		(1)	Estriol
	(2)	Incre		respira		surface;		(2)	Estradiol
			mmatio					(3)	Ecdysone
	(3)		eased nu ratory s		f bro	nchioles; Increased		(4)	Epinephrine
	(4)				oronc	hioles; Decreased			
73.	Mat		ratory s items g		Colu	mn I with those in	76.		ich of the following structures or regions is orrectly paired with its function ?
	Colı	umn II				rrect option given			
	belo	w : Colui				Column II		(1)	Corpus callosum : band of fibers connecting left and
	a.		mn I Ispid va	lve i.		etween left atrium			right cerebral
	a.	11100	ispiù va	IVE 1.		nd left ventricle			hemispheres.
	b.	Bicus	spid val	ve ii	. В	etween right		(2)	Hypothalamus : production of
						entricle and			releasing hormones and regulation of
		G	1	.1	-	ulmonary artery			temperature,
	c.	Semi	lunar va	alve 11		etween right rium and right			hunger and thirst.
						entricle		(3)	Limbic system : consists of fibre
		a	b	С					tracts that interconnect
	(1)	ii	i	iii					different regions of
	(2)	i	ii 	iii 					brain; controls movement.
	(3)	i iii	iii i	ii ii				(\mathbf{A})	Medulla oblongata : controls respiration
	(4)	111	1	11				(4)	and cardiovascular
74.			-			mn I with those in			reflexes.
	belo		i anu s	elect th	e co	rrect option given	77.	Whi	ch of the following hormones can play a
		Colu	mn I			Column II			nificant role in osteoporosis ?
	a.	Tidal	l volume)	i.	2500 - 3000 mL		(1)	Parathyroid hormone and Prolactin
	b.	Inspi	ratory I	Reserve	ii	1100 – 1200 mL		(2)	Estrogen and Parathyroid hormone
		volur	ne					(3)	Progesterone and Aldosterone
	c.	Expir volur	ratory R ne	leserve	ii	i. 500 – 550 mL		(4)	Aldosterone and Prolactin
	d.	Resid	lual vol	ume	iv	. 1000 – 1100 mL	78.	The	transparent lens in the human eye is held in
		a	b	с	d				place by
	(1)	iv	iii	ii	i			(1)	smooth muscles attached to the ciliary body
	(2)	i	iv	ii	iii			(2)	smooth muscles attached to the iris
	(3)	iii	i	iv	ii			(3)	ligaments attached to the iris
	(4)	iii	ii	i	iv		ļ	(4)	ligaments attached to the ciliary body

79.		ch of the following terms describe human tition ?	85.		ntify the vertebrate group of animals racterized by crop and gizzard in its digestive
	(1)	Pleurodont, Diphyodont, Heterodont		syst	em.
	(2)	Pleurodont, Monophyodont, Homodont		(1)	Osteichthyes
	(3)	Thecodont, Diphyodont, Heterodont		(2)	Aves
	(4)	Thecodont, Diphyodont, Homodont		(3)	Reptilia
00				(4)	Amphibia
80.		ch of the following events does <i>not</i> occur in gh endoplasmic reticulum ?	86.	Cilia	ates differ from all other protozoans in
	(1)	Phospholipid synthesis		(1)	having two types of nuclei
	(2)	Cleavage of signal peptide		(2)	using pseudopodia for capturing prey
	(3)	Protein glycosylation		(3)	having a contractile vacuole for removing
	(4)	Protein folding			excess water
81.	Sele	ct the <i>incorrect</i> match :		(4)	using flagella for locomotion
	(1)	Polytene – Oocytes of amphibians chromosomes	87.		ch of the following animals does <i>not</i> undergo amorphosis ?
	(2)	Submetacentric – L-shaped chromososmes		(1)	Starfish
	$\langle \mathbf{O} \rangle$	chromosomes		(2)	Moth
	(3)	Allosomes – Sex chromosomes		(3)	Tunicate
	(4)	Lampbrush – Diplotene bivalents chromosomes		(4)	Earthworm
82.	Niss	l bodies are mainly composed of	88.	Whi	ch of the following features is used to identify
	(1)	Free ribosomes and RER		a m	ale cockroach from a female cockroach ?
	(2)	Nucleic acids and SER		(1)	Presence of anal cerci
	(3)	DNA and RNA		(2)	Forewings with darker tegmina
	(4)	Proteins and lipids		(3)	Presence of caudal styles
83.		y ribosomes may associate with a single		(4)	Presence of a boat shaped sternum on the 9 th abdominal segment
	\sin	NA to form multiple copies of a polypeptide ultaneously. Such strings of ribosomes are ned as	89.		ch of the following organisms are known as of producers in the oceans ?
	(1)	Nucleosome		(1)	Euglenoids
	(2)	Plastidome		(1) (2)	Cyanobacteria
	(3)	Polyhedral bodies		(2)	Diatoms
	(4)	Polysome		(3)	Dinoflagellates
0.4		-		(4)	Diffinagenates
84.	(1)	ch of these statements is <i>incorrect</i> ? Oxidative phosphorylation takes place in	90.	Whi hom	ch one of these animals is not a neotherm ?
		outer mitochondrial membrane.		(1)	Psittacula
	(2)	Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.		(2)	Camelus
	(3)	Glycolysis occurs in cytosol.		(3)	Chelone
	(4)	Enzymes of TCA cycle are present in mitochondrial matrix.		(4)	Macropus

91.	Which of the following pairs is <i>wrongly</i> matched?	98.			-	ains a	are present in
	(1) T.H. Morgan : Linkage		(1)	Pinu.			
	(2) XO type sex : Grasshopper		(2) (3)	Mang Cyca	-		
	determination		(4)	Must			
	(3) ABO blood grouping : Co-dominance		(=)	112 040 0			
	(4) Starch synthesis in pea : Multiple alleles	99.					wed by meiosis, spores are
92.	Which of the following flowers only once in its		-		exogen	•	in
	life-time ?		(1)		haromy	vces	
	(1) Papaya		(2) (3)	Agar	ıcus naria		
	(2) Mango(3) Jackfruit		(3) (4)		naria rospora		
	(4) Bamboo species		(1)	iveur	osporu		
93.	Select the <i>correct</i> match :	100.	Whi	ch one	is wro	ongly	matched ?
J J.	(1) Francois Jacob and – <i>Lac</i> operon		(1)			-	nism – <i>Chlorella</i>
	Jacques Monod		(2)		ma cup		– Marchantia
	(2) Matthew Meselson – <i>Pisum sativum</i>		(3)				oores – Brown algae
	and F. Stahl		(4)	Unifi	lagena	te gan	netes – Polysiphonia
	(3) Alfred Hershey and – TMV	101.	Mat	ch the	items	given	in Column I with those in
	Martha Chase		Colu	umn I	I and	select	the <i>correct</i> option given
	(4) Alec Jeffreys – Streptococcus		belo	w:			
~ .	pneumoniae			Colun	nn I		Column II
94.	Select the <i>correct</i> statement :		a.	Herb	arium	i.	It is a place having a
	(1) Transduction was discovered by S. Altman.						collection of preserved
	 (2) Spliceosomes take part in translation. (2) Property services developed by a Pritish 						plants and animals.
	(3) Punnett square was developed by a British scientist.		b.	Key		ii.	A list that enumerates methodically all the
	(4) Franklin Stahl coined the term "linkage".						species found in an area
95.	Which of the following has proved helpful in						with brief description
	preserving pollen as fossils ?						aiding identification.
	(1) Sporopollenin		c.	Muse	eum	iii.	Is a place where dried and
	(2) Oil content(3) Cellulosic intine						pressed plant specimens
	(3) Centrosic intine(4) Pollenkitt						mounted on sheets are
96.	Offsets are produced by		d.	Cata	logue	iv.	kept. A booklet containing a list
0.01	(1) Parthenogenesis		u.	Oata	logue	1.	of characters and their
	(2) Parthenocarpy						alternates which are
	(3) Mitotic divisions						helpful in identification of
	(4) Meiotic divisions						various taxa.
97.	The experimental proof for semiconservative			a	b	С	d
	replication of DNA was first shown in a (1) Virus		(1)	iii	iv	i	ii
	(2) Plant		(2)	ii	iv	iii	i
	(3) Bacterium		(3)	iii	ii	i	iv
	(4) Fungus		(4)	i	iv	iii	ii

 102. In which of the following forms is iron absorbed by plants ? (1) Both ferric and ferrous 109. What type of ecological pyramid obtained with the following data ? Secondary consumer : 120 g 	Would be
(1) Both ferric and ferrous Secondary consumer · 120 g	
(1) Deconvary consumer. 120 g	
(2) Free element Primary consumer : 60 g	
(3) Ferrous Primary producer : 10 g	
(4) Ferric (1) Upright pyramid of biomass	
103. Which one of the following plants shows a very (2) Upright pyramid of numbers	
close relationship with a species of moth, where none of the two can complete its life avele without (3) Pyramid of energy	
none of the two can complete its life cycle without the other ? (3) Pyrainid of energy (4) Inverted pyramid of biomass	
(1) Viola	
(2) Banana (2) Banana	1 1 4 4
(1) Number of individuals entering a	
(d) Hydrilla (2) Number of individuals leaving th	e habitat
104. Oxygen is <i>not</i> produced during photosynthesis by	
(4) Death rate	
(2) <i>Cycas</i> 111. Which of the following is a secondary p	ollutant?
$(3) Nostoc (1) O_3$	
(4) Green sulphur bacteria (2) SO ₂	
105. Which of the following elements is responsible for	
maintaining turgor in cens ?	
(1) Calcium (4) CO	
(2) Potassium (2) G U	g elements
(3) Sodium (4) Numerical acts as a catalyst in degradation of	ozone and
(4) Magnesium release of molecular oxygen ?	
106. What is the role of NAD ⁺ in cellular (1) Oxygen	
respiration? (2) Fe	
(1) It is the final electron acceptor for anaerobic respiration. (3) Cl	
(4) Carbon (4) Carbon	
(3) It functions as an electron carrier. 113. Niche is	
(4) It functions as an enzyme. (1) the functional role played by th	e organism
107. Double fertilization iswhere it lives(2)the range of temperature that th	o organism
(1) Syngamy and triple fusion (2) the range of temperature that the needs to live	e organishi
(2) Fusion of two male gametes with one egg (3) the physical space where an orga	nism lives
(3) Fusion of one male gamete with two polar (4) all the biological factors in the	
nuclei environment	organism s
(4) Fusion of two male gametes of a pollen tube with two different eggs	
109 Dellen grains can be stared for several years in	
liquid nitrogen having a temperature of (1) 22^{nd} April	
$(1) - 160^{\circ}C $ $(2) 16^{\text{th}} \text{ September}$	
$(2) - 196^{\circ}C$	
$(3) - 80^{\circ}C $ (3) 21 st April	
(4) -120° C (4) 5^{th} June	

115.	Whie	ch of the following statements is <i>correct</i> ?	122.		ew' variety of rice was patented by a foreign			
	(1)	Stems are usually unbranched in both <i>Cycas</i> and <i>Cedrus</i> .			pany, though such varieties have been ent in India for a long time. This is related to			
	(2)	Horsetails are gymnosperms.		(1)	Basmati			
	(3)	Selaginella is heterosporous, while Salvinia		(2)	Lerma Rojo			
		is homosporous.		(3)	Sharbati Sonora			
	(4)	Ovules are not enclosed by ovary wall in gymnosperms.		(4)	Co-667			
116.		ndary xylem and phloem in dicot stem are luced by	123.	vect	ch of the following is commonly used as a or for introducing a DNA fragment in human phocytes ?			
	(1)	Axillary meristems		(1)	pBR 322			
	(2)	Phellogen		(2)	λ phage			
	(3)	Vascular cambium		(3)	Ti plasmid			
	(4)	Apical meristems		(4)	Retrovirus			
117.	Swee	et potato is a modified	124	. ,	of bioresources by multinational companies			
	(1)	Rhizome	121.		organisations without authorisation from the			
	(2)	Tap root			erned country and its people is called			
	(3)	Adventitious root		(1)	Bioexploitation			
	(4)	Stem		(2)	Biodegradation			
118.	Pneı	umatophores occur in		(3)	Biopiracy			
	(1)	Submerged hydrophytes		(4)	Bio-infringement			
	(2)	Carnivorous plants	125.	Sele	ct the <i>correct</i> match :			
	(3)	Free-floating hydrophytes		(1)	G. Mendel – Transformation			
	(4)	Halophytes		(2)	T.H. Morgan – Transduction			
110	Solo	at the uner g statement.		(3)	$F_2 \times Recessive parent - Dihybrid cross$			
119.	(1)	ct the <i>wrong</i> statement : Mitochondria are the powerhouse of the cell		(4)	Ribozyme – Nucleic acid			
	(1)	in all kingdoms except Monera.						
	(2)	Pseudopodia are locomotory and feeding	126.	 The correct order of steps in Polymerase Chain Reaction (PCR) is (1) Denaturation, Annealing, Extension 				
		structures in Sporozoans.						
	(3)	Mushrooms belong to Basidiomycetes.		(1) (2)				
	(4)	Cell wall is present in members of Fungi		(2) Denaturation, Extension, Annealing(3) Annealing, Extension, Denaturation				
		and Plantae.		(4)	Extension, Denaturation, Annealing			
120.	Casp	parian strips occur in						
	(1)	Endodermis	127.		India, the organisation responsible for			
	(2)	Cortex			ssing the safety of introducing genetically lifed organisms for public use is			
	(3)	Pericycle		(1)	Genetic Engineering Appraisal Committee			
	(4)	Epidermis		(1)	(GEAC)			
121.	Plan	ts having little or no secondary growth are		(2)	Research Committee on Genetic			
	(1)	Cycads			Manipulation (RCGM)			
	(2)	Conifers		(3)	Council for Scientific and Industrial			
	(3)	Deciduous angiosperms			Research (CSIR)			
	(4)	Grasses		(4)	Indian Council of Medical Research (ICMR)			

128.	The stage during which separation of the paired	136.	
	homologous chromosomes begins is		coagulating power of an ion depend ?
	 (1) Zygotene (2) Diakinesis 		(1) The sign of charge on the ion alone
	(2) Diakinesis(3) Diplotene		(2) Both magnitude and sign of the charge on the ion
	(4) Pachytene		(3) Size of the ion alone
129.	The Golgi complex participates in		
120.	(1) Activation of amino acid		(4) The magnitude of the charge on the ion alone
		197	
	 (2) Respiration in bacteria (2) Examplify a function of a construction of a construc	107.	The solubility of $BaSO_4$ in water is 2.42×10^{-3} gL ⁻¹ at 298 K. The value of its
	 (3) Formation of secretory vesicles (4) Forther and have below. 		-
190	(4) Fatty acid breakdown		solubility product (K_{sp}) will be
130.	Stomatal movement is not affected by (1)		(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)
	(1) CO_2 concentration		(1) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$
	(2) O_2 concentration		(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
	(3) Light		
	(4) Temperature		(3) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
131.	The two functional groups characteristic of sugars are		(4) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
	(1) carbonyl and hydroxyl	138.	Given van der Waals constant for NH ₃ , H ₂ , O ₂
	(2) carbonyl and phosphate		and CO_2 are respectively 4.17, 0.244, 1.36 and
	(3) carbonyl and methyl		3.59, which one of the following gases is most
	(4) hydroxyl and methyl		easily liquefied ?
132.	Which of the following is not a product of light		(1) CO ₂
	reaction of photosynthesis ?		(2) O_2
	(1) Oxygen		(3) H ₂
	(2) NADPH(3) NADH		(4) NH_3
	(4) ATP		
		139.	Following solutions were prepared by mixing
133.	Stomata in grass leaf are		different volumes of NaOH and HCl of different
	(1) Barrel shaped		concentrations :
	(2) Rectangular		a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
	(3) Kidney shaped		10 10
104	(4) Dumb-bell shaped		b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
134.	Which of the following is true for nucleolus ?(1) It is a site for active ribosomal RNA		10 10
	synthesis.		c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
	(2) It takes part in spindle formation.		M M
	(3) It is a membrane-bound structure.		d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH
	(4) Larger nucleoli are present in dividing cells.		pH of which one of them will be equal to 1?
135.	Which among the following is <i>not</i> a prokaryote ?		(1) c
	(1) Oscillatoria		(2) d
	(2) Nostoc		(3) a
	(3) Mycobacterium		(4) b
	(4) Saccharomyces		

140. Which one of the following elements is unable to 146. The compound A on treatment with Na gives B, form MF_6^{3-} ion ?

- (1)In
- (2)В
- (3)Al
- (4)Ga
- 141. Which of the following statements is *not* true for halogens?
 - (1)Chlorine has the highest electron-gain enthalpy.
 - All but fluorine show positive oxidation (2)states.
 - (3)All are oxidizing agents.
 - (4)All form monobasic oxyacids.
- **142.** In the structure of ClF_3 , the number of lone pairs of electrons on central atom 'Cl' is
 - (1)three
 - (2)four
 - (3)two
 - (4)one
- 143. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
 - (1)Cu
 - (2)Mg
 - (3)Zn
 - (4)Fe
- 144. The correct order of N-compounds in its decreasing order of oxidation states is
 - (1)NH₄Cl, N₂, NO, HNO₃
 - (2)HNO₃, NH₄Cl, NO, N₂
 - HNO₃, NO, NH₄Cl, N₂ (3)
 - (4)HNO₃, NO, N₂, NH₄Cl
- 145. The correct order of atomic radii in group 13 elements is
 - (1) B < Ga < Al < In < Tl
 - B < Ga < Al < Tl < In(2)
 - B < Al < Ga < In < Tl(3)
 - B < Al < In < Ga < Tl(4)

- and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - C₂H₅OH, C₂H₅ONa, C₂H₅Cl (1)
 - (2)C₂H₅Cl, C₂H₆, C₂H₅OH
 - C₂H₅OH, C₂H₅Cl, C₂H₅ONa (3)
 - C₂H₅OH, C₂H₆, C₂H₅Cl (4)
- **147.** Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1)CH₄
 - (2) $CH_3 CH_3$
 - (3) $CH_2 = CH_2$
 - $CH \equiv CH$ (4)
- 148. The compound C_7H_8 undergoes the following reactions :

$$\mathrm{C_7H_8} \xrightarrow{3 \ \mathrm{Cl}_2 \, / \, \Delta} \mathrm{A} \xrightarrow{\mathrm{Br}_2 \, / \, \mathrm{Fe}} \mathrm{B} \xrightarrow{\mathrm{Zn} \, / \, \mathrm{HCl}} \mathrm{C}$$

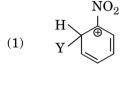
The product 'C' is

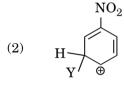
- (1)*p*-bromotoluene
- (2)3-bromo-2,4,6-trichlorotoluene
- (3)o-bromotoluene
- (4)*m*-bromotoluene
- 149. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
 - (1)NO
 - (2) N_2O
 - (3)NO₂
 - (4) $N_{2}O_{5}$

						1					
150.		type Cl ₂ (en)		erism s	hown by the complex	155.	In th	ne reaction			
			-	oniana			OI	H O ⁻ Na ⁺			
	 (1) (2) 		age ison	omerism			\nearrow	CHO			
	(2)			isomeri			$\left \right\rangle$	$ + CHCl_3 + NaOH \longrightarrow \bigcirc CHO $			
	(4)			isomeris			the	lastrankila involved is			
151.					lowing ions exhibits		the e	electrophile involved is			
1010					gnetism as well ?		(1)	dichlorocarbene $(:CCl_2)$			
	(1)	MnO	$\frac{2}{4}$				(2)	$\stackrel{\Theta}{\text{dichloromethyl anion}} (\stackrel{\Theta}{\text{CHCl}}_2)$			
	(2)	MnO	- 4				(3)	formyl cation (CHO)			
	(3)	Cr_2O	2-				(3)	(CHO)			
	(4)	CrO_4^2	-				(4)	dichloromethyl cation $(CHCl_2)$			
152.	$_{\rm spin}$	magr	netic m	oments	n in Column I with the of the ions given in c orrect code :	156.	alde	poxylic acids have higher boiling points than hydes, ketones and even alcohols of parable molecular mass. It is due to their			
		Colur	nn I		Column II		(1)	formation of intermolecular H-bonding			
	a.	C0 ³⁺		i.	$\sqrt{8}$ B.M.		(2)	more extensive association of carboxylic			
	b.	Cr^{3+}		ii.	$\sqrt{35}$ B.M.			acid via van der Waals force of attraction			
		Fe ³⁺		iii.	$\sqrt{3}$ B.M.		(3)	formation of carboxylate ion			
	с.						(4)	formation of intramolecular H-bonding			
	d.	Ni ²⁺		iv.	$\sqrt{24}$ B.M.		a				
				v.	$\sqrt{15}$ B.M.	157.		pound A, $C_8H_{10}O$, is found to react with			
		a	b	С	d			OI (produced by reacting Y with NaOH) and			
	(1)	iii	v	i	ii		smel	ds a yellow precipitate with characteristic			
	(2)	iv	i	ii	iii			d Y are respectively			
	(3)	i	ii	iii	iv			1 5			
	(4)	iv	v	ii	i			\sim CH ₃			
153.	Iron	carbor	nyl, Fe(($(CO)_5$ is			(1)	$CH_3 \longrightarrow OH$ and I_2			
	(1)	dinuc		Ģ							
	(2)	trinu	clear				(2)	CH CH and I			
	(3)	mono	nuclear				(2)	\sim CH – CH ₃ and I ₂			
	(4)	tetrai	nuclear					ОН			
154.			etry an Ni(CO) ₄]		etic behaviour of the		(3)	$\bigcirc \frown \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
	(1)	tetral	hedral g	geometry	and paramagnetic						
	(2)	squar	e plana	r geome	try and paramagnetic		(4)	$H_3C \longrightarrow CH_2 - OH and I_2$			
	(3)	tetral	hedral g	geometry	and diamagnetic						

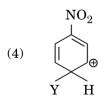
- (2)square planar geometry and paramagnetic
- (3) tetrahedral geometry and diamagnetic
- (4) square planar geometry and diamagnetic

158.	The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of $1: 0.5: 1. \Delta H$ for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X_2 will be (1) 400 kJ mol ⁻¹ (2) 800 kJ mol ⁻¹ (3) 100 kJ mol ⁻¹ (4) 200 kJ mol ⁻¹	163.	A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be (1) 4.4 (2) 2.8 (3) 3.0 (4) 1.4
159.	 When initial concentration of the reactant is doubled, the half-life period of a zero order reaction (1) remains unchanged (2) is tripled (3) is doubled (4) is halved 	164.	The difference between amylose and amylopectin is (1) Amylose is made up of glucose and galactose (2) Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage (3) Amylose have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
160.	 The correction factor 'a' to the ideal gas equation corresponds to (1) forces of attraction between the gas molecules (2) electric field present between the gas molecules (3) volume of the gas molecules (4) density of the gas molecules 	165.	 (4) Amylopectin have 1→4 α-linkage and 1→6 α-linkage Which of the following oxides is most acidic in nature? (1) CaO (2) BaO (3) BeO (4) MgO
161.	For the redox reaction $\begin{array}{rcl} \operatorname{Mn} \operatorname{O}_4^- + \operatorname{C}_2 \operatorname{O}_4^{2-} &+ \operatorname{H}^+ &\longrightarrow \operatorname{Mn}^{2+} + \operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O} \\ \\ \text{the correct coefficients of the reactants for the balanced equation are} \\ & \operatorname{Mn} \operatorname{O}_4^- & \operatorname{C}_2 \operatorname{O}_4^{2-} & \operatorname{H}^+ \\ \\ (1) & 5 & 16 & 2 \\ (2) & 2 & 16 & 5 \\ (3) & 2 & 5 & 16 \\ (4) & 16 & 5 & 2 \end{array}$		 (4) MgO Regarding cross-linked or network polymers, which of the following statements is <i>incorrect</i>? (1) They contain strong covalent bonds in their polymer chains. (2) Examples are bakelite and melamine. (3) They are formed from bi- and tri-functional monomers. (4) They contain covalent bonds between various linear polymer chains. Nitration of aniline in strong acidic medium also
162.	Which one of the following conditions will favour maximum formation of the product in the reaction, $A_2(g) + B_2(g) \rightleftharpoons X_2(g) \Delta_r H = -X \text{ kJ } ?$ (1) High temperature and low pressure (2) High temperature and high pressure (3) Low temperature and low pressure (4) Low temperature and high pressure		 gives m-nitroaniline because (1) In acidic (strong) medium aniline is present as anilinium ion. (2) In absence of substituents nitro group always goes to m-position. (3) In electrophilic substitution reactions amino group is meta directive. (4) In spite of substituents nitro group always goes to anly m position


Low temperature and high pressure


(4)

goes to only m-position.


168. Which of the following molecules represents the 171. Magnesium reacts with an element (X) to form an order of hybridisation sp^2 , sp^2 , sp, sp from left to right atoms?

- $CH_3 CH = CH CH_3$ (1)
- (2) $CH_2 = CH - CH = CH_2$
- (3) $CH_2 = CH - C \equiv CH$
- $HC \equiv C C \equiv CH$ (4)
- 169. Which of the following carbocations is expected to be most stable?

170. Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl)

- $(1) NR_{2} > OR > F$
- $(2) NH_2 > OR > F$
- (3) $-NR_2 < -OR < -F$
- (4) $-NH_2 < -OR < -F$

- ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is
 - (1) Mg_3X_2
 - (2)Mg₂X
 - MgX₂ (3)
 - Mg₂X₂ (4)
- 172. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is

(1)
$$\frac{1}{2}$$

(2)
$$\frac{3\sqrt{3}}{4\sqrt{2}}$$

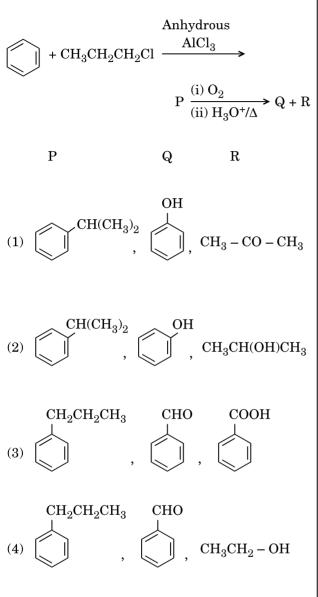
(3)
$$\frac{4\sqrt{3}}{3\sqrt{2}}$$

(4)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

173. Which one is a *wrong* statement?

- The value of m for d_{π^2} is zero. (1)
- (2)The electronic configuration of N atom is

$1s^2$	$2s^2$	$2p_x^1 \ 2p_y^1 \ 2p_z^1$				
^↓	^↓	1	1	↓		


- (3)An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
- Total orbital angular momentum of electron (4)in 's' orbital is equal to zero.
- 174. Consider the following species :

CN⁺, CN⁻, NO and CN

Which one of these will have the highest bond order?

- (1) CN
- CN^+ (2)
- (3) CN^{-}

175. Identify the major products P, Q and R in the following sequence of reactions :

- **176.** Which of the following compounds can form a zwitterion ?
 - (1) Glycine
 - (2) Benzoic acid
 - (3) Acetanilide
 - (4) Aniline

- **177.** The correct difference between first- and second-order reactions is that
 - (1) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
 - (2) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - (3) the half-life of a first-order reaction does not depend on $[A]_0$; the half-life of a second-order reaction does depend on $[A]_0$
 - (4) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
- **178.** Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is
 - (1) $BaH_2 < BeH_2 < CaH_2$
 - (2) $\operatorname{BeH}_2 < \operatorname{BaH}_2 < \operatorname{CaH}_2$
 - $(3) \quad \mathrm{CaH}_2 < \mathrm{BeH}_2 < \mathrm{BaH}_2$
 - (4) $BeH_2 < CaH_2 < BaH_2$
- **179.** Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

Then the species undergoing disproportionation is

- (1) HBrO
- (2) Br₂
- (3) BrO₄
- (4) BrO_3^-
- **180.** In which case is the number of molecules of water maximum ?
 - (1) 10^{-3} mol of water
 - (2) 0.00224 L of water vapours at 1 atm and 273 K
 - $(3) \quad 0{\cdot}18 \ g \ of \ water$
 - (4) 18 mL of water

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. **Cases where a** candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.