Redox Reaction

DISCLAIMER

"The content provided herein are created and owned by various authors and licensed to Sorting Hat Technologies Private Limited ("Company"). The Company disclaims all rights and liabilities in relation to the content. The author of the content shall be solely responsible towards, without limitation, any claims, liabilities, damages or suits which may arise with respect to the same."

Introduction

- Chemical reactions in which reduction and oxidation takes place are known as **redox reactions**.
- In order to define oxidation and reduction, there were many concepts which are as following:

Classical concept

Note: Above definitions failed to define oxidation and reduction in all reactions. Hence, its concept was modified later as following:

OXIDATION	REDUCTION		
Addition of electronegative element	Addition of electropositive element		
Or	or		
Removal of electropositive element	Removal of electronegative element		

Removal of electro negative element **e.g.**

Oxidation and reduction of HCl

Modern Concept

- It is an electronic concept.
- This concept is based upon transfer of electrons.

OXIDATION	REDUCTION
The process in which substance looses some electrons.	The process in which substance gains some electrons.

Note: Modern concept can be used to identify oxidation and reduction only in ionic reactions.

Oxidation Number

- The average charge per atom possessed by an element in a specie is called "**oxidation number**" of that element in that species (atom, molecule, ion).
- In a specie, the charge is developed on atoms due to difference in electronegativity between bonded atoms or due to transfer of electrons.

e.g. H₂

 $(Oxidation number)_{H} = \frac{Total charge on H atoms}{Total number of H - atoms}$ $= \frac{O}{2}$ = O

Oxidation number of hydrogen in H_2 = zero

e.g. i) HCl

$$(O.N)_{H} = \frac{(+1)}{1} = +1$$

 $(O.N)_{Cl} = \left(\frac{-1}{1}\right) = -1$

ii) HCN

$$(O.N)_{H} = \frac{+1}{1} = +1$$

 $(O.N)_{C} = \frac{-1+3}{1} = +2$
 $(O.N)_{N} = \frac{-3}{1} = -3$

Order of electronegativity H < C < N

Note: Oxidation number may be positive, negative, integer, fractional or even zero.

e.g.

 $C_{3}O_{2}$ (carbon suboxide) i)

Now,

$$(O.N)_{O} = \frac{-2-2}{2} = (-2)$$

 $(O.N)_{C} = \frac{+2+O+2}{3} = \left(\frac{+4}{3}\right)^{2}$

ii) Na₂S₄O₆

$$(O.N)_{O} = \frac{-2}{6} = (-2)$$

 $(O.N)_{S} = \frac{+5 + 0 + 0 + 2}{4} = (+2.5)$

Note: An element can show different oxidation number in different species.

e.g. i) $\stackrel{_{+4}}{CO_2}$ and $\stackrel{_{-4}}{CH_4}$

$$O = C = O \text{ and } H \underbrace{-}_{C} \underbrace{-}_{H}$$

Oxidation number of carbon in $\mathrm{CO}_{_2}$ is +4 and in $\mathrm{CH}_{_4}$ is –4.

ii) H_2^{+1} , H Cl and NaOH

Oxidation number of hydrogen in $\rm H_{2},$ HCl and NaOH is 0, +1 and +1 respectively.

Determination of Oxidation Number

For a specie, the sum of oxidation number of each atom present is equal to the charge possessed by that specie.

- Let A_xB_yC_z x(p) + y(q) + z(r) = 0• (A_,B_,C_,)[∳]
- $x(p) + y(q) + z(r) = \phi$

```
e.g.
```

```
H<sub>2</sub>O
i)
       • 2(+1) + 1 (-2) = 0
ii)
       CF_{4}
       • 1(+4) + 4(-1) = 0
```

• 1(+4) + 2(-2) = 0

Oxidation Number of Some Common Elements

For elements present in their free state (Natural form at room temperature and pressure), • the oxidation number is zero.

```
e.g.
```

C, N_2 , O_2 , F_2 S₈, P₄, Cl₂ Oxidation number = 0 Η₂, He, Na, Mg, Fe, Zn, Ag, etc.

All IA group elements show (+1) oxidation number in their compounds. •

i.e.

```
Li
Na
       In compounds, Oxidation number = (+1) always
Κ
Rb
Cs
```

All IIA group elements show (+2) oxidation numbers in their compounds

i.e.

Ве	
Mg	
Ca	In compounds, Oxidation number = $(+2)$ always
Sr	
Ba	

Note: Fluorine is most electronegative element hence always show (-1) oxidation number in its compounds.

• For hydrogen

General oxidation number = (+1) But , In metal hydrides, (oxidation number)_H = (-1) (Electronegativity)_{Metal} < (Electronegativity)_H

e.g.

 $\begin{array}{rl} \text{LiH} & \Rightarrow 1(+1) + 1 \ (x) = 0 \\ \Rightarrow & x = -1 \\ \text{CaH}_2 \Rightarrow 1(+2) + 2(x) = 0 \\ \Rightarrow & x = -1 \end{array}$

• For oxygen

General oxidation number = (-2) in oxides. But, In peroxides, oxidation number = (-1)

In superoxides, oxidation number = $\left(-\frac{1}{2}\right)$

Na ₂ O	Na ₂ O ₂	NaO ₂
2(+1)+1(x) = 0 x = (-2)	2(+1) + 2(x)=0 x = (-1)	$1(+1) + 2x = 0$ $x = \left(-\frac{1}{2}\right)$
Oxide	Peroxide	Superoxide

• Compounds of oxygen with fluorine

0F ₂	0 ₂ F ₂		
1(x) + 2(-1) = 0	2(x) + 2(-1) = 0		
x= (+2)	x = +1		

p–block Elements

Generally have a range of oxidation number of following:

$$(n - 8) to (+n)$$

Where, 'n' is number of valence electrons.

• For halogens (except F)

Oxidation N	umber	⁻ Range	= (-1) to $(+7)$			
	-1 l ⁻ ,	O Cl ₂ ,	+1 Cl O ⁻ ,	+3 Cl O ₂ -	$^{+5}$ Cl O ₃ ⁻ ,	$\begin{bmatrix} +7\\ Cl \ O_4^- \end{bmatrix}$

• Oxidation number of Chlorine

Case – I	Chlorine in chlorides	Cl⁻
		1(x) = -1
		x = -1
Case – II	Chlorine molecule	Cl ₂
		2(x) = 0 x = 0
Case – III	Chlorine with more electronegative atom	ClO^{-1} 1(x) + 1(-2) = -1 x = +1

• For chalcogens except oxygen

Oxidation number range = (-2) to (+6) e.g. $\overset{-2}{S^{2-}}, \overset{-1}{S_2^{2-}}, \overset{0}{S_8}, \overset{+4}{SO_2}, \overset{+6}{SO_3}$

• For Nitrogen family

e.g.

Oxidation number =(-3) to (+5)

• **d-block elements** show multiple but fixed oxidation number in their compounds.

Fe = (+2), (+3) Ti = (+2), (+4) Cu = (+2), (+1) Mn = (+2), (+4), (+5), (+6), (+7) Cr = (+6), (+3) Zn = (+2) Ag = (+1) etc. Note: Maximum possible oxidation number of an element in species is $\boxed{+8}$ which is for Osmium and Xenon in their particular compounds.

Note: In calculations , if O.N of p-block elements comes beyond the range then it is incorrect.

i.e. $(O.N)_{s} = (+6)$

Practice questions

1. Calculate the oxidation number of underlined elements in the following compounds:

i) $\underline{Fe}_{3}O_{4}$ 3x + 4(-2) = 03x = 8 $x = \frac{8}{3}$ Oxidation number of Fe is +8/3. ii) FeO x + (-2) = 0x = +2Oxidation number of Fe is +2. iii) $Na_2S_4O_6$ Oxidation number of S in $Na_2S_4O_6$ 2(+1) + 4x + 6(-2) = 0 \Rightarrow 2 + 4x - 12 = 04 x = 10 $x = \frac{10}{4}$ x = +2.5 <u>C</u>2H5OH iv) 2(x) + 5(1) + (-2) + (1) = 02x + 5 - 2 + 1 = 02x = -4x =-2 Oxidation number of C in C_2H_5OH is -2. $\underline{F}eSO_4(\underline{N}H_4)_2SO_4$. $6H_2O_4$ v) $FeSO_4 \Rightarrow x+(-2) = 0 \Rightarrow x = +2$ $NH_4^+ \Rightarrow x + 4(1) = +1 \Rightarrow x = -3$ Oxidation number of Fe in $FeSO_4$.(NH₄)₂SO₄.6H₂O = +2 Oxidation number of N in $FeSO_4$.(NH₄)₂SO₄.6H₂O = -3 vi) $\underline{C}O_2$ x + 2(-2) = 0x = +4Oxidation number of C in CO_2 is + 4. vii) Fe<u>S</u>2 (+2) + 2(x) = 02x = -2

x = -1 O.N. of S in FeS_2 is (-1). viii) PbS x + (-2) = 0x = +2Oxidation number of Pb in PbS is +2. ix) \underline{CS}_{2} x + 2(-2) = 0x - 4 = 0x = +4Oxidation number of C in CS_2 is +4. x) CrO₅ x+(-2) + 4(-1) = 0x-2 - 4 = 0O.N. of Cr in CrO_5 is +6

Note: 4 oxygen atoms in peroxide linkages.

xi) $(\underline{N}_2H_5)_2SO_4$ $\begin{array}{l} 2(2x + 5(1)) + (-2) = 0 \\ 4x + 8 = 0 \end{array}$ 4x = -8x = -8/4 = -2Oxidation number of N in $(N_2H_5)_2SO_4$ is (-2). xii) \underline{N}_2O_5 2(x) + 5(-2) = 02x - 10 = 0 $\Rightarrow 2x = 10$ x = 10/2 \Rightarrow x = +5 \Rightarrow Oxidation number of N in N_2O_5 is + 5. xiii) HCN Oxidation number of C: (1) + x + (-3) = 0|x = +2|Oxidation number of N: 1 + (+2) + x = 0x = -3

Oxidation number of C in HCN is (+2). Oxidation number of N in HCN is (-3). xiv) $Ba[H_2PO_2]_2$ Oxidation number of Ba is +2 Oxidation number of P is: (+2)+2[2(+1) + x+2(-2)] = 02 + 2(2+x - 4) = 02 + 4 + 2x - 8 = 02x - 2 = 02x = 2x = +1 \therefore O.N of P in Ba[H₂PO₂]₂ is (+1) xv) <u>Os</u>O₄ x+4(-2) = 0x = 8 Oxidation number of Os in OsO_4 is (+8). xvi) $H_2S_2O_3$ 2(+1) + 2(x) + 3(-2) = 02 + 2x - 6 = 02x - 4 = 02x = 4x = 2 Oxiation number of S in $H_2S_2O_3 = (+2)$ xvii) <u>C</u>H<u></u>,SO₂H Oxidation number of C is (-2)Oxidation number of S is (+4) xix) Ba<u>,Xe</u>O₆ Oxidation number of Xe is +8. 2(+2) + x + 6(-2) = 0x = +8

xx) Ba(SCN)₂
 Oxidation number of S is (-2).
 Oxidation number of C is (+4).
 Oxidation number of N is(-3).

Select the compound in which chlorine shows oxidation state +7:		
(A) HClO ₄	(B) HClO ₃	
(C) HClO ₂	(D) HClO	

A1 (A)

a) HClO₄ 1+x+4(-2) = 0x= + 7 O.N of Cl in $HClO_4$ is (+7). b) HClO₃ (+1) + x + 3(-2) = 0x=+5 O.N of Cl in $HClO_3$ is (+5). c) HClO₂ (+1) + x + 2(-2) = 0x=+3 O.N of Cl in $HClO_{2}$ is (+3). d) HClO (+1) + x + (-2) = 0x = +1

Q2 The oxidation number of C in CH₄, CH₃Cl, CH₂Cl₂, CHCl₃ and CCl₄ are respectively.
 (A) +4, +2, 0, -2, -4
 (B) +2, +4, 0, -4, -2
 (C) -4, -2, 0, +2, +4
 (D) -2, -4, 0, +4,+2

A2 (c)

Oxidation number of C in:

(iii)

$$x + 4(1) = 0$$

$$x = -4$$

 $\mathbf{X} = \mathbf{0}$

$$CH_2Cl_2$$
 (iv)
x + 2 - 2 = 0

$$\begin{array}{l} CH_{3}Cl \\ x + 3(1) + (-1) = 0 \\ x + 3 - 1 = 0 \\ x = -2 \\ CHCl_{3} \\ x + 1 + 3(-1) = 0 \\ \hline \hline x = +2 \\ \end{array} \quad (v) \quad \begin{array}{l} CCl_{4} \\ x + 4(-1) = 0 \\ \hline \hline x = +4 \\ \hline \hline x = +4 \\ \end{array}$$

0

The correct order of the increasing oxidation states of nitrogen in NO, N₂O, NO₂ and N₂O₃ is:
(A) N₂O < NO < N₂O₃ < NO₂
(B) N₂O < N₂O₃ < NO < NO₂
(C) NO₂ < NO < N₂O₃ < N₂O
(D) NO₂ < N₂O₃ < NO < N₂O

A1 A

Oxidation states of N in NO, $\rm N_2O, \, \rm NO_2$ and $\rm N_2O_3$ are: NO_2 NO x + 2(-2) = 0x + (-2) = 0x - 4 = 0x = +2 x = +4 N_2O_3 N_2O 2x + 3(-2) = 02x + (-2) = 02x = +22x - 6 = 0|x = +1|x = +3

Q2 Oxidation number of oxygen in K₂O, K₂O₂ and KO₂, respectively, is:
 (A) +1, +2 and +4
 (B) +1, +4 and +2
 (C) -2, -1 and -1/2
 (D) -2, -1 and +1/2

A2 (C) $K_2O \longrightarrow Oxide$ $K_2O_2 \longrightarrow Peroxide$ $KO_2 \longrightarrow Superoxide$

Oxidation:

The process in which oxidation number of element increases is known as **oxidation**. e.g.

(i) $Z_{n}^{0} \longrightarrow Z_{n}^{+2} Z_{n}^{2+}$	(ii) $\stackrel{+2}{Fe}^{2+} \longrightarrow \stackrel{+3}{Fe}^{3+}$	
(iii) $\overrightarrow{Cl}^{-1} \longrightarrow \overrightarrow{Cl}_{2}^{0}$	(iv) $\stackrel{_{+4}}{MnO_2} \longrightarrow \stackrel{_{+7}}{MnO_2}$	<u>с</u> -

Reduction:

The process in which oxidation number of element decreases is known as **reduction**. e.g.

(i) $\operatorname{Br}_2 \longrightarrow \operatorname{Br}^{-1}$	(ii) $\operatorname{Cl}^{+5} O_2^{-} \longrightarrow \operatorname{Cl}^{-1}$
(iii) $\operatorname{Cu}^{2+} \longrightarrow \operatorname{Cu}^{+1}$	(iv) $\operatorname{Cr}_{2}^{+6} \operatorname{O}_{7}^{2-} \longrightarrow \operatorname{Cr}^{3+}^{+3}$

Note: Alone oxidation or alone reduction never takes place means both process are carried out simultaneously and hence the reaction is collectively known as **Redox reaction**.

Oxidizing agent / Oxidant

Substance which oxidizes other substance by getting reduced itself.

Reducing agent / Reductant

Substance which reduces other substances by getting oxidized itself.

 $Cr_2O_7^{2-}$ is reducing agent. I⁻ is oxidizing agent.

Illustration:

Classification of redox reactions

Intramolecular reaction

(3)	Combination reactions		(4)	Decomposition reactions
(i)	At reactant side, atleast one element free state is present but no element free state at product side. Reactants Products (Atleast one element → (No eleme in free state) in free state	t in t in s ent ate)	(i)	At reactant side, no element in free state but in product side, there is atleast one element in free state i.e. $\begin{pmatrix} No \text{ element} \\ in \text{ free state} \\ at \text{ reactant side} \end{pmatrix} \rightarrow \begin{pmatrix} At \text{ least} \\ one \text{ element} \\ in \text{ state} \end{pmatrix}$
(i) (ii)	E.g. (i) $\stackrel{-4}{C}H_4 + \stackrel{0}{\underset{\text{Element in free state}}{} \rightarrow \underbrace{\stackrel{+4}{C}\stackrel{-2}{\underset{\text{Noelement in free state}}{} \underbrace{\stackrel{+4}{C}\stackrel{-2}{\underset{\text{O}_2}{} + 2H_2O}{}_{\text{Noelement in free state}}$ Combination Reaction (Intermolecular) (ii) $\stackrel{0}{P_4} + 3NaOH \longrightarrow 3NaH_2PO_2 + \stackrel{+3}{P}H_3$ Combination Reaction (Intramolecular)			
(iii)	$\underbrace{4NH_4NO_2}_{No \text{ element}} \longrightarrow \underbrace{4N_2}_{\text{Element in}} + 3O_2 + 2H_2O$	Decomposition Reaction (Intramolecular)		
(5)	Metal Displacement reactions	(6)	Non	– metal displacement reactions

(5)	metal Displacement reactions	(0)	Non – metal displacement reactions
(i)	A metal ion present in a compound is displaced by a more electropositive metal present in free state.	(i)	A non-metal present in a compound is displaced by a more electronegative non-metal present in free state.
	e.g. $Zn+CuSO_4 \rightarrow ZnSO_4 + Cu$ i.e. Cu is displaced by Zn		e.g. $2HBr+Cl_2 \rightarrow 2HCl+Br_2$ i.e. Br is displaced by Cl

7. Disproportion Reaction

- Redox reactions in which an element present in one single oxidation number at reactant side converts into two different oxidation number at product side showing both oxidation and reduction. •
 - Means only one element is involved in redox reaction.
 - (e.g)
 - Self decomposition of H_2O_2 (i)

(iii) Disproportion of P_4

(iv) Disproportion of Halogens

Note: Reverse of disproportionation reaction is known as comproportionation reaction.

(i)
$$2H_2S^{-2} + SO_2 \rightarrow 3S^{0} + 2H_2O$$

(ii) $NH_4NO_2 \rightarrow NO_2 + 2H_2O$

Illustration:

Q1 White phosphorus reacts with NaOH as:
 P₄ + 3NaOH + 3H₂O → PH₃ + 3NaH₂PO₂ is an example of:
 (A) Dimerization reaction
 (B) Disproportionation reaction
 (C) Condensation reaction
 (D) Precipitation reaction

A1 B $\stackrel{0}{P_4}$ + 3NaOH + 3H₂O $\rightarrow \stackrel{-3}{P}$ H₃ + 3NaH₂ $\stackrel{+1}{S}$ O₂

6

Which of the following chemical reactions does not depicts the oxidizing behaviour of H₂SO₄?

+1

(A)
$$\operatorname{Ca}(\operatorname{OH})_2 + \operatorname{H}_2\operatorname{SO}_4 \rightarrow \operatorname{Ca}\operatorname{SO}_4 + 2\operatorname{H}_2\operatorname{O}$$

(B)
$$\operatorname{NaCl} + \operatorname{H}_2 \operatorname{SO}_4 \rightarrow \operatorname{NaH} \operatorname{SO}_3 + \operatorname{HCl}$$

(C) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$

(D)
$$2HI + H_2 \overset{+\circ}{SO}_4 \rightarrow I_2 + \overset{+\circ}{SO}_2 + 2H_2O$$

Q2 A and C

Oxidising behaviour of H_2SO_4 means tendency to oxidise or reduction of self.

Example:
$$2HI + H_2 \stackrel{+6}{SO_4} \rightarrow I_2 + \stackrel{+4}{SO_2} + 2H_2O$$

In 1st half : $2HI \longrightarrow I_2$ Oxidation number of I is increases by one thus, oxidation reaction. In 2nd half : $H_2^{+6}SO_4 \longrightarrow SO_2^{+4}$

O.N of S decreases by 2, thus reduction reaction & H_2SO_4 act as oxidising agent.

Redox Reaction

Balancing of Redox Reactions

Balancing of Redox Reactions:

There are two methods discussed as follows

1. Ion electron method:

This method is applicable for ionic reactions only means it is based upon modern concept. **Step-I**: Split the given redox reaction into two half reactions as oxidation and reduction. **Step-II**: In both reactions, balance elements other than H and O by hit and trial. **Step-III**: Balance O by adding suitable number of H_2O . **Step-IV**: To balance hydrogen and oxygen.

In acidic medium \rightarrow by adding H⁺ To balance $0 \longrightarrow \text{add H}_20$ to side deficit of 0 and double number of H⁺ ions on the opposite side. The number of H₂0 molecules is equal to the number of 0 atoms deficit. In basic medium \rightarrow by adding OH⁻ To balance 0 \longrightarrow add H₂0 to side excess of 0 and same number of OH⁻ ions on the opposite side. The number of H₂0 molecules is equal to the number of 0 atoms deficit. To balance H \longrightarrow add H₂0 to side deficit of H and same number of OH⁻ ions on the opposite side. The number of H₂0 molecules is equal to the number of 0 atoms deficit.

Step-V: Balance charge by adding suitable number of electrons at suitable side.

Step-VI: Multiply both reactions by suitable number separately to make same number of electrons in both.

Step-VII: Add both half reactions due to which electrons will be cancelled out and balanced redox reaction is obtained.

Examples:

i) $MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$

```
Step-I:

MnO_4^- \rightarrow Mn^{2+}

C_2O_4^{2-} \rightarrow CO_2

Step - II

MnO_2^- \rightarrow Mn^{2+}
```

```
MnO_{4}^{-} \rightarrow Mn^{2+}
C_{2}O_{4}^{2-} \rightarrow 2CO_{2}
Step-III
MnO_{4}^{-} \rightarrow Mn^{+} + 4H_{2}O
C_{2}O_{4}^{2-} \rightarrow 2CO_{2}
Step-IV
```

(vi)
$$Cl_2 \xrightarrow{OH^-} Cl^- + ClO_3^-$$

 $2e^- + Cl_2 \rightarrow 2Cl^-$
 $12OH^- + 6H_2O + Cl_2 \xrightarrow{} 2ClO_3^- + 12H_2O + 10e^-$

3BrO₄⁻ + Br⁻ → 4BrO₃⁻

 $BrO_4^- + Br^- \longrightarrow BrO_3^-$ 3x (2e⁻ + 2H⁺ + BrO₄⁻ \rightarrow BrO₃⁻ + H₂O $1 \times (3H_2O + Br^- \rightarrow BrO_3^- + 6H^+ + 6e^-)$ After adding above two reactions we get

iv)
$$AsO_3^{3-} + NO_3^{-} \xrightarrow{OH^-} AsO_4^{3-} + NO_2$$

 $2OH^- + H_2O + AsO_3^{3-} \rightarrow AsO_4^{3-} + 2H_2O + 2e^-$
 $2\times(e^- + 2H_2O + NO_3^{-} \rightarrow NO_2 + H_2O + 2OH^-$
After adding above two reactions we get
 $AsO_3^{3-} + 2NO_3^{-} + H_2O \rightarrow AsO_4^{3-} + 2NO_2 + 2OH^-$

iii)
$$Zn + NO_3^- \xrightarrow{OH^-} ZnO_2^{2-} + NH_3$$

 $1\times(4OH^- + 2H_2O + Zn \rightarrow ZnO_2^{2-} + 4H_2O + 2e^-)$
 $8e^- + 9H_2O + NO_3^- \rightarrow NH_3 + 3H_2O + 9OH^-)$
After adding above two reactions we get
 $4Zn + NO_3^- + 7OH^- \rightarrow 4ZnO_2^{2-} + NH_3 + 2H_2O$

NO₃⁻ + Br⁻
$$\xrightarrow{H^+}$$
 NO + Br₂
3e⁻ + 4H⁺ + NO₃⁻ → NO + 2H₂O)×2
2Br⁻ → Br₂ + 2e⁻)× 3
After adding above two reactions we get
2NO₃⁻ + 6Br⁻ + 8H⁺ → 2NO + 3Br₂ + 4H₂O

$$p - VII$$

After adding above two reactions we get:
 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

ii)

v)

$$C_2O_4^{2^-} \rightarrow 2CO_2 + 2e^-$$

Step-VI
(MnO₄⁻ + 8H⁺ + 5e⁻ → Mn²⁺ +4H₂O) × 2
(C₂O₄^{2^-} → 2CO₂ + 2e⁻) × 5

Step – V $5e^- + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$

 $8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4H_2O$ $C_2 O_4^{2-} \rightarrow 2CO_2$

After adding above two reactions we get

 $6Cl_2 + 12OH^- \longrightarrow 10Cl^- + 2ClO_3^- + 6H_2O$

Note: If reaction is not given in ionic form then convert it (if possible) by removing all spectator ions.

KCl = K ⁺	+	Cl⁻
$H_2SO_4 = 2H^+$	+	SO ₄ ⁻)
$= H^+$	+	HSO ₄ ∫
$KMnO_4 = K^+$	+	MnO_4^-

Example:

i) $KMnO_4 + KI + HCl \longrightarrow MnCl_2 + I_2 + KCl + H_2O$ If all spectator ions are removed, we get

 $\begin{array}{l} \mathsf{MnO}_4^{-} + \mathsf{I}^{-} & \overset{\mathsf{H}^{+}}{\longrightarrow} \mathsf{Mn}^{2+} + \mathsf{I}_2 \\ \text{Balancing the equation} \\ 2\mathsf{MnO}_4^{-} + 10\mathsf{I}^{-} + 16\mathsf{H}^{+} & \longrightarrow 2\mathsf{Mn}^{2+} + 5\mathsf{I}_2 + 8\mathsf{H}_2\mathsf{O} \\ \text{Final equation:} \\ \hline \\ 2\mathsf{KMnO}_4 + 10\mathsf{KI} + 16\mathsf{HCl} & \longrightarrow 2\mathsf{MnCl}_2 + 5\mathsf{I}_2 + 8\mathsf{H}_2\mathsf{O} + 12\mathsf{KCl} \\ \hline \end{array}$

ii) $K_2Cr_2O_7 + K_2C_2O_4 + H_2SO_4 \longrightarrow Cr_2(SO_4)_3 + CO_2 + K_2SO_4$ If all spectator ions are removed, we get $Cr_2O_7^{2-} + C_2O_4^{2-} + H^+ \longrightarrow Cr^{3+} + CO_2 + H_2O$ Balancing, $2Cr_2O_7^{2-} + 6C_2O_4^{2-} + 28H^+ \longrightarrow 4Cr^{3+} + 12CO_2 + 14H_2O$ Final equation: $2K_2Cr_2O_7 + 6K_2C_2O_4 + 14H_2SO_4 \longrightarrow 2Cr_2(SO_4)_3 + 12CO_2 + 14H_2O + 8K_2SO_4$

2. Oxidation number method:

This method is applicable for every redox reaction.

- i) Select two species showing oxidation and reduction at reactant side by observing change in oxidation number.
- ii) Calculate "Net increase or decrease in oxidation number for these two species".
- iii) Make Total increase = Total decrease by multiplying species with suitable numbers.
- iv) Now balance others by hit and trial.
- v) Balance remaining O by $H_{2}O$.
- vi) Balance remaining H by H^+ or OH^- and H_2O (discussed in ion electron method).

Examples:

i)

ii)

$$\stackrel{+1+5-2}{\mathsf{H}} \stackrel{+2}{\mathsf{N}} \stackrel{-2}{\mathsf{O}_3} + \qquad \stackrel{+4-2}{\mathsf{S}} \stackrel{+4-2}{\mathsf{O}_2} \xrightarrow{+1+6-2} \stackrel{+2}{\mathsf{H}} \stackrel{+2}{\mathsf{O}_2} \stackrel{+1+6-2}{\mathsf{H}_2} \stackrel{+2}{\mathsf{S}} \stackrel{+2}{\mathsf{H}_4}$$

Step: $H \overset{+5}{N} O_3 + \overset{+4}{S} O_2 \xrightarrow{+4} \overset{+4}{N} O_2 + H_2 \overset{+6}{S} O_4$

There is 1 decrease in N and 2 increase in S.

$$2HNO_3 + 1SO_2 \longrightarrow 2NO_2 + 1H_2SO_4$$

$$\overset{+2}{NO} + \overset{0}{Br_2} \xrightarrow{+5} \overset{-1}{\longrightarrow} HNO_3 + HBr$$

There is 3 increase in N and 2 decrease in $\mathrm{Br}_{\mathrm{2}}.$ So,

$$2NO + 3Br_2 + 4H_2O \longrightarrow 2HNO_3 + 6HBr$$

iii)
$$\operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3$$
 + $\operatorname{I}_2 \longrightarrow \operatorname{Na}_2 \operatorname{S}_4 \operatorname{O}_6$ + Na_2

$$2\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3} + \mathrm{1I}_{2} \longrightarrow \mathrm{1Na}_{2}\mathrm{S}_{4}\mathrm{O}_{6} + 2\mathrm{NaI}$$

iv)
$$Cr_2^{+6}O_7^{2-} + C_2^{+3}O_4^{2-} \longrightarrow Cr^{3+} + CO_2^{+4}$$

There is 6 decrease in Cr and 2 increase in C.

 $1Cr_{2}O_{7}^{2-} + 3C_{2}O_{4}^{2-} + 14H^{+} \longrightarrow 2Cr^{3+} + 6CO_{2} + 7H_{2}O$

Practice questions

v)	$\overset{+6}{\text{Cr}} O_4^{2-} + \overset{-1}{\text{I}^-} \xrightarrow{H^+} \overset{+3}{\text{Cr}} \overset{+3}{\text{r}^{3+}} + \overset{0}{\text{I}_2}$
	$1CrO_4^{2-} + 3I^- + 8H^+ \longrightarrow 1Cr^{3+} + 3/2I_2 + 4H_2O$
vi)	$\stackrel{+3}{\operatorname{As}}O_3^{3-} + \stackrel{+5}{\operatorname{NO}}_3^{-} \xrightarrow{\operatorname{OH}^-} \xrightarrow{\operatorname{As}}O_4^{3-} + \stackrel{+4}{\operatorname{NO}}O_2$
	$1AsO_3^{3-} + 2NO_3^{-} + H_2O \longrightarrow 1AsO_4^{3-} + 2NO_2^{-} + 2OH^{-}$
vii)	$\stackrel{+2}{Fe} \stackrel{-1}{S}_2 + \stackrel{0}{O}_2 \xrightarrow{+3} \stackrel{-2}{\longrightarrow} \stackrel{+4}{Fe}_2 \stackrel{-2}{O}_3 + \stackrel{+4}{SO}_2$
	$\mathbf{2FeS}_2 + \mathbf{11/2} \ \mathbf{O}_2 \longrightarrow \mathbf{Fe}_2 \mathbf{O}_3 + \mathbf{4SO}_2$
viii)	$A_{s_2}S_3^{-2} + H_{NO_3}^{+5} \longrightarrow H_3^{+5}A_{sO_4} + H_2^{+6}SO_4 + NO_4^{+2}$
	$3As_2S_3 + 28HNO_3 + 4H_2O \longrightarrow 6H_3AsO_4 + 9H_2SO_4 + 28NO_4$
ix)	$Cl_2 \xrightarrow{OH^-} Cl^- + ClO_3^-$
	$3Cl_2 + 6OH^- \longrightarrow 5Cl^- + ClO_3^- + 3H_2O$
x)	$KMnO_4 + H_2^{+3}C_2^{}O_4 + H_2^{}SO_4 \xrightarrow{+2} MnSO_4 + CO_2^{}+ K_2^{}SO_4$
	$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \longrightarrow 2MnSO_4 + 10CO_2 + K_2SO_4 + 8H_2O$
xi)	$\overset{+6}{\text{K}_{2}\text{Cr}\text{O}_{7}} + \overset{+2}{\text{Fe}(\text{NO}_{3})_{2}} + \text{HNO}_{3} \longrightarrow \overset{+3}{\text{Cr}(\text{NO}_{3})_{3}} + \overset{+3}{\text{Fe}(\text{NO}_{3})_{3}} + \text{KNO}_{3} + \text{H}_{2}\text{O}$
	$1\mathrm{K_2Cr_2O_7}+\mathrm{6Fe(NO_3)_2}\ +14\mathrm{HNO_3}\longrightarrow 2\mathrm{Cr(NO_3)_3}+\mathrm{6Fe(NO_3)_3}+2\mathrm{KNO_3}+7\mathrm{H_2O_3}$
xii)	$KMnO_4 + HCl \longrightarrow MnCl_2 + H_2O + Cl_2 + KCl oxidation no. is notAll HCl is not converting into Cl_2.KMnO_4 + 8HCl \longrightarrow 1MnCl_2 + 5/2 Cl_2 + KCl + 4H_2O$
xiii)	$\overset{0}{\operatorname{Cu}} + \overset{+5}{\operatorname{H}}\overset{0}{\operatorname{NO}_3} \longrightarrow \overset{+2}{\operatorname{Cu}}\overset{+5}{\operatorname{NO}_3}\overset{+4}{\operatorname{NO}_2} + \overset{+4}{\operatorname{H}}\overset{-}{\operatorname{NO}_2} + \overset{+2}{\operatorname{H}_2}\overset{-}{\operatorname{O}_2}$
	$Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$

	Consider the following reactionx $MnO_4^- + yC_2O_4^{2-} + z H^+ \rightarrow xMnO^{2+} + 2yCO_2 + \frac{z}{2}H_2O$ The value of x, y and z in the reaction are, respectively (A) 2,5 and 8 (B) 2,5 and 16 (C) 5,2 and 8 (D) 5, 2 and 16
A1	(B) Balanced chemical reaction: $2MnO_4^{-} + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ The values of x, y and z are 2,5 and 16 respectively.
	For the reaction: $I^- + ClO_3^- + H_2SO_4 \longrightarrow Cl^- + HSO_4^- + I_2$ The true statement(s) in the balanced equation is/are: (A) Stoichiometric coefficient of HSO_4^- is 6 (B) lodide is oxidized (C) Sulphur is reduced (D) H_2O is one of the products
A2	(A), (B) & (D) The balanced equation is: $ClO_3^- + 6l^- + 6H_2SO_4 \longrightarrow 3l_2 + Cl^- + 6HSO_4^- + 3H_2O$ So, stoichiometric coefficient of HSO_4^- is 6.

Equivalent Concept (Gram equivalent concept)

Gram equivalent mass

It is the mass of one gram – equivalent of the substance in grams. For a substance

Equivalent mass =
$$\frac{Molar mass}{n - factor}$$

Number of gm – equivalent

Equivalents is similar property as moles but its value of not fixed.
 i.e. 1 mole = N_A particles

But, 1 equivalent = $\begin{cases} N_A \text{ particles} \\ 2N_A \text{ particle} \\ \text{or} \\ N_A \text{ / 3 particles etc.} \end{cases}$ All are possible

• For a substance, equivalent mass and in grams is equal to the mass of one equivalent. So for a substance:

 $\label{eq:Number of equivalent} \text{Number of equivalent} = \frac{\text{Mass of substance(g)}}{\text{Equivalent mass}} = \frac{\text{Mass}}{\text{Molar Mass}} \times n - \text{Factor}$

= Moles × n–factor

Normality(N)

- It is a concentration terms means is defined for solutions
- It is defined as the number of equivalent of solute present in 1 litre of solution.

Normality = $\frac{\text{Equivalent of solute}}{\text{Volume of solution(L)}}$

Unit \longrightarrow equivalent/L or Normal

$$\begin{split} N &= \left(\frac{\text{Moles of solute}}{V_{\text{sol.}}} \right) \times n - \text{Factor} \\ \hline \\ \hline \text{Normality} &= \text{Molarity} \times n - \text{factor} \\ \hline \\ \hline \\ N \times V &= (\text{Equivalent})_{\text{Solute}} \\ \end{split} \right\} \text{ Aslo}$$

Calculation of n-factor

• n-factor is the property of a substance which have a positive value only.

n – Factor ≠ 0 ≠ negative

Case –I: When no reaction is provided

i) For atom

n–factor = General valency

e.g.

Atom	n-factor
Na	1
Al	3
Fe	2
В	3
С	4

etc.

• For ions:

[n-factor = |magnitude of charge on ion]

etc.

e.g. H⁺ = 1

Ba²⁺ = 2

OH⁻ = 1

 $CO_{3}^{2-} = 2$ $PO_{4}^{3-} = 3$

• For acids:

n – factor = Maximum basicity

Basicity = number of replacable H^+ per molecule of acid.

 $\left.\begin{array}{c} \text{HCl, HBr, HI, HNO_3, HCN,}\\ \text{e.g. HCOOH, CH_3COOH, H_3PO_2,}\\ \text{H_3BO_3 etc.}\end{array}\right\} n - \text{factor} = 1\\ \text{H_2SO_4, H_2C_2O_4, H_2CO_3, H_3PO_3 etc.} n - \text{factor} = 2\\ \text{H_3PO_4, H_3AsO_4 etc.} n - \text{factor} = 3\\ \end{array}\right.$ For bases:

101 54505.

n – factor = Maximum acidity

```
Acidity = \begin{cases} No. \text{ of replacable OH}^{-} \\ No. \text{ of acceptable H}^{+} \end{cases} per molecule of base
e.g. NaOH, KOH, RbOH, CsOH, NH<sub>3</sub>, RNH<sub>2</sub> etc.} = 1
```

 $Ba(OH)_2$, $Zn(OH)_2 = NH_2 - CH_2 - CH_2 - NH_2$ etc.} = 2

• For salt:

n – factor = Total charge on cation or Total charge on anions

Salt	lons	n-factor
NaCl	1 Na⁺ and 1 Cl⁻	1
K ₂ SO ₄	2 K ⁺ and 1 SO ₄ ²⁻	2
MgBr ₂	1 Mg ²⁺ and 2 Br ⁻	2
Ba ₃ (PO ₄) ₂	3 Ba ²⁺ and 2 PO ₄ ³⁻	6

Illustration:

Determine n-factor of K_2SO_4. $Al_2(SO_4)_3$.24 H_2O_2

A1

From cation : $2K^+ + 2Al^{+3}$ n - factor = $2 \times 1 + 2 \times 3 = 8$ From anion : $1SO_4^{2-} + 3SO_4^{2-}$ n - factor = $4 \times 2 = 8$

 $\mathbb{Q}2$ Calculate no. of gram equivalents in following:

i) 54 gm Al³⁺ iii) 2 mole CO₃²⁻ v) 12.04×10²² ions of SO₄²⁻ ii) 98 gm H₃PO₄ iv) 1.5 g molecule Ba(OH)₂

A2 Using No. of equivalent = $\frac{Mass}{Molar mass} \times n - facto$

i) 54 gm Al

Equivalent =
$$\frac{54}{27} \times 3 = 6$$

ii) 98 mg
$$H_3 PO_4 \frac{98}{98} \times 3 = 3$$

iii) 2 mole
$$CO_3^{2-} = 2 \times 2 = 4$$

v) 12.04×10²² ions of SO₄²⁻ =
$$\left(\frac{12.04 \times 10^{22}}{N_A}\right) \times 2 = 0.4$$

Normality = $\frac{\text{Equivalent of solute}}{\text{Volume of soution(L)}} = \frac{0.5}{500 / 1000} = 1 \text{ N}$

Calculate normality of solution prepared by mixing 24.5 gm H₂SO₄ in its 500 ml solution.

A3 Given 24.5 gm of H_2SO_4

Molarity, M =
$$\frac{\frac{24.5}{98}}{\frac{500}{1000}} = 0.5$$

Normality = Molarity \times n-factor = 0.5 \times 2 = 1 N

or, No. of equivalents = $\frac{Mass}{Molar mass} \times n - factor = \frac{24.5}{98} \times 2 = 0.5$

n-factor (Valency Factor)

n-factor in non-redox reaction

n–factor = Charge Exchanged per molecule Or It is the magnitude of charge per molecule n-factor (1) (2) NaCl n-factor (2) (1) $\begin{array}{rrrr} Na_2CO_3 & + & HCl \longrightarrow NaHCO_3 & + & NaCl \\ (1) & (1) & (1) & (1) \end{array}$ n-factor (1) $\stackrel{+}{H}$ $\stackrel{-}{Cl}$ $\stackrel{+}{H}$ $\stackrel{-}{Na}$ $\stackrel{+}{OH}$ $\stackrel{-}{\longrightarrow}$ $\stackrel{+}{Na}$ $\stackrel{-}{Cl}$ $\stackrel{+}{H}$ $\stackrel{-}{H_2O}$ n-factor (1) (1) (1) (1) $H_2SO_4 + NaOH \longrightarrow Na_2SO_4 + H_2O$ n-factor (2) (1) (2) (1) $H_2SO_4 + NaOH \longrightarrow NaHSO_4 + H_2O$ r (1) (1) (1) (1) n-factor (1) (1) Note: Acid + Base \longrightarrow Salt + H₂O \downarrow \downarrow \downarrow \downarrow Basicity Acidity |Charge| (1) n-factor

 $H_{3}PO_{4} + NaOH \longrightarrow Na_{3}PO_{4} + H_{2}O$ n-factor (3) (1) (3) (1)

$$H_{3}PO_{4} + NaOH \longrightarrow Na_{2}HPO_{4} + H_{2}O$$
n-factor (2) (1) (2) (1)
$$H_{3}PO_{4} + NaOH \longrightarrow NaH_{2}PO_{4} + H_{2}O$$
n-factor (1) (1) (2) (1)

n–factor in redox reaction

For a substance present in a redox reaction, the "net increase or decrease in oxidation number per molecule" is known as n-factor of that substance in that reaction. So, in a balanced redox reaction:

(n-factor) –	Total increase or decrease in the reaction
(II - Tactor) _{Substance} -	Stoichiometric coefficient of substance

Example:

n-factor for disproportionation

$$(n - factor)_{disproportion} = \frac{xy}{x + y}$$

where $x \longrightarrow n$ -factor for alone oxidation

y \longrightarrow n-factor for alone reduction

e.g.

$$x = 1 \times 2 = 2 \uparrow$$
Oxidation

$$H_2O_2 \longrightarrow H_2O+O_2$$
Reduction

$$y = 1 \times 2 = 2 \downarrow$$

$$(n - factor)_{H_2O_2} = \frac{2 \times 2}{2 + 2} = 1$$

$$Cl_2 \longrightarrow Cl^- + ClO_3^-$$

$$(n - factor)_{Cl_2} = \frac{2 \times 10}{2 + 10} = \frac{5}{3}$$

 $\begin{array}{l} \underset{\text{Reduction}}{\text{KMnO}_{4}} + \underset{\text{Oxidation}}{\text{MnO}_{2}} \longrightarrow \underset{\text{Disproportion}}{\text{MnO}_{2}} \\ (n - \text{factor})_{M_{n}O_{2}} = \frac{3 \times 2}{3 + 2} = \frac{6}{5} \end{array}$

Note: $A_x B_y \rightarrow Product$ $n-Factor \neq 0$ $\neq (-ve)$

e.g.
$$NH_3 \longrightarrow N_2 + H_2$$

 $(n - Factor)_{NH_3} \neq 0$
 $= 3$
 $\therefore 2NH_3 \longrightarrow N_2 + 3H_2$
 $\left(\frac{6}{2}\right) \qquad \left(\frac{6}{1}\right) \qquad \left(\frac{6}{3}\right)$
 $H_2 + O_2 \longrightarrow H_2O$
 $(2) \qquad (4) \qquad H_2PO_2^-$
 $N-factor - \frac{12 \times 4}{12 + 4} = \frac{48}{16} = (3)$

Some commonly used agents

i) Permanganate ion (MnO_4^-)

Since (+7) is maximum oxidation numbers for Mn so in redox reactions, MnO_4^- always acts as an oxidizing agent.

The product depends upon the medium of reaction as following:

$$\stackrel{\text{acidic}}{\longrightarrow} \stackrel{\text{H}^{2}}{\text{MnO}_{4}^{-}} + \text{R.A} \xrightarrow{\text{basic/neutral}} \stackrel{\text{H}^{2}}{\text{MnO}_{2}^{-}} (3)$$

$$\stackrel{\text{strong basic}}{\longrightarrow} \stackrel{\text{H}^{6}}{\text{MnO}_{4}^{2-}} (1)$$

ii) Dichromate ion $(Cr_2O_7^{2-})$ It also acts as an oxidizing agent but only in acidic medium.

$$\overset{^{+6}}{\operatorname{C}} r_{2} O_{7}^{2-} \overset{^{H^{+}}}{\longrightarrow} 2 \operatorname{Cr}^{3+} \qquad \text{n-factor } \operatorname{Cr}_{2} O_{7}^{-2} = \frac{6}{1} \text{ and } \operatorname{Cr}^{3+} = \frac{6}{2}$$

$$\underbrace{ \text{Other medium}}_{\text{Non-redox}} \text{Non-redox}$$

iii) Oxalate ion $(C_2O_4^{2-})$

In redox reactions, it always acts as reducing agent.

$$\stackrel{^{+3}}{\overset{}{\overset{}{\overset{}{\overset{}}{\overset{}}{\overset{}}}}} O_2^{2-} \xrightarrow{\text{redox}}_{\text{any medium}} \xrightarrow{^{+4}} O_2$$
$$\Rightarrow (n - factor)_{C_2 O_4^{2-}} = 2$$

iv) H_2O_2

With other reagent, will act as oxidizing and reducing agent

$$\begin{array}{c} H_2O_2 + R.A \longrightarrow H_2O \\ (O.A) \\ H_2O_2 + O.A \longrightarrow O_2 \\ (R.A) \end{array} \right\} (n-factor)_{H_2O_2} = 2$$

v) Mohr's salt(Ferrous Ammonium sulphate

 $FeSO_4.(NH_4)_2SO_4.6H_2O \xrightarrow{Redox} Fe^{3+} only$ \Rightarrow (n-factor)_{Mohr's salt} = 1

Law of equivalence

In a chemical reaction, all reactants react in equal number of equivalents and produce same number of equivalents of each product.

i.e. For aA bB сC dD + + \rightarrow If 'a' mole required 'b' mole 🖌 c' mole 'd'mole produces i.e. A:B:C:D by moles = a:b:c:d But If 'x' Equivalent required 'x'Equivalent →'x'Equivalent 'x'Equivalent produces \Rightarrow A:B:C:D by equivalent = 1:1:1:1 e.g. $H_2SO_4 +$ $2NaOH \longrightarrow Na_2SO_4 +$ $2H_2O$ 1 mole 2 mole 1 mole 2 mole n – factor (2) (2) (1) (1) equivalent 2 2 2 2

Note: So, for a particular reaction, $(Equivalent)_{given} = (Equivalent)_{required}$

where,

$$\boxed{\text{Equivalent}} = \begin{cases} \frac{\text{Mass}}{\text{Equivalent mass}} \\ \frac{\text{Mass}}{\text{Molar mass}} \times n - \text{factor} \\ \text{Mole} \times n - \text{factor} \\ \text{M} \times V \times n - \text{factor} \\ \text{N} \times V \end{cases}$$

(

Illustration:

To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid			
(H ₃ PO ₃), the volume of 0.1 M aqueous KOH solution required as:			
(A) 10 ml	(B) 20 ml		
(C) 40 ml	(D) 60 ml		

Q1 (C)

Given:

 $H_3PO_3 + 2KOH \longrightarrow K_2HPO_3 + 2H_2O$ Volume of 0.1 M aqueous solution of phosphoric acid = 20 ml We know from law of equivalence:

 $(Equivalent)_{H_2PO_2} = (Equivalent)_{KOH}$

$$\begin{split} & \mathsf{M}_1 \times \mathsf{V}_1 \times \text{ n-factor} = \mathsf{M}_2 \times \mathsf{V}_2 \times \text{n-factor} \\ & 0.1 \times 20 \times 2 = 0.1 \times (\mathsf{V})_{\mathsf{KOH}} \times 1 \\ & \Rightarrow \qquad 4 = (\mathsf{V})_{\mathsf{KOH}} \times 0.1 \\ & \Rightarrow \qquad \mathsf{V}_{\mathsf{KOH}} = 40 \text{ ml} \end{split}$$

Q2 The number of moles of KMnO₄ that will be needed to react with one mole of sulphite ions in acidic solution is:
 (A) 2/5
 (B) 3/5
 (C) 4/5
 (D) 1

A2 A

 $2MnO_4^- + 5SO_3^{2-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$ We know from law of equivalence:

$$\begin{split} & \left(\text{Equivalent}\right)_{\text{KMnO}_4} = \left(\text{Equivalent}\right)_{\text{SO}_3^{-2}} \\ & \left(\text{Mole} \times n - \text{factor}\right)_{\text{KMnO}_4} = \left(\text{Mole} \times n - \text{factor}\right)_{\text{SO}_3^{-2}} \\ & n \times 5 = 1 \times 2 \\ & n = 2/5 \text{ moles} \end{split}$$

The mass of potassium dichromate crystals required to oxides 750 cm³ of 0.6 M Mohr's salt solution is:
 (Given molar mass: potassium dichromate = 294 g/mol, Mohr's salt = 392 g/mol)
 (A) 22.05 g
 (B) 2.2 g
 (C) 0.49 g
 (D) 0.45 g

A3 (A)

$$K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 7H_2O_4$$

We know from law of equivalance:

 $\begin{aligned} \left(\mathsf{Equivalent} \right)_{\mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7} &= \left(\mathsf{Equivalent} \right)_{\mathsf{Mohr's salt}} \\ \left(\frac{\mathsf{Mole}}{\mathsf{Molar mass}} \times \mathsf{n-factor} \right) &= \left(\mathsf{M} \times \mathsf{V} \times \mathsf{n-factor} \right)_{\mathsf{Mohr's salt}} \\ &\frac{\mathsf{w}}{\mathsf{294}} \times \mathsf{6} = \mathsf{0.6} \times \frac{\mathsf{750}}{\mathsf{1000}} \times \mathsf{1} \end{aligned}$

$$w = 0.6 \times \frac{75}{100} \times \frac{294}{6} = 22.05 \, \text{gm}$$

What weight of HNO₃ is needed to convert 62 gm of P₄ to H₃PO₄ in the reaction?
 P₄ + HNO₃ → H₃PO₄ + NO₂ + H₂O
 (A) 63 gm
 (B) 630 gm
 (C) 315 gm
 (D) 126 gm

The balance chemical reaction:

 $P_4 + 20HNO_3 \longrightarrow 4H_3PO_4 + 20NO_2 + 4H_2O_3$

Molar mass of $P_4 = 9/mol$

Molar mass of HNO₃ = 63 9/mol

We know from law of equivalence:

 $(Equivalent)_{P_4} = (Equivalent)_{HNO_3}$

$$\begin{pmatrix} \frac{\text{Mass}}{\text{Molar mass}} \times n - \text{Factor} \end{pmatrix}_{P_4} = \begin{pmatrix} \frac{\text{Mass}}{\text{Molar mass}} \times n - \text{Factor} \end{pmatrix}_{\text{HNO}_3}$$

$$\Rightarrow \quad \frac{62}{124} \times 20 = \frac{\text{W}}{63} \times 1$$

$$\Rightarrow \qquad \text{W} = \frac{62}{124} \times 20 \times 63 = 630 \text{ gm}$$

Titration (A_(aq) **vs B**_(aq)**) Aim:** Determination of the concentration of solution present in conical flask by titration with standard solution from burette.

Illustration:

It requires 40 ml of 1 M Ce⁴⁺ to titrate 20 ml of 1 M Sn²⁺ to Sn⁴⁺. What is the oxidation state of the Cerium in the product?

A1
$$Ce^{4+} + Sn^{2+} \longrightarrow Sn^{4+} + Ce^{n+}$$

(Milli Equivalent)_{Ce⁴⁺} = (Milli Equivalent)_{Sn²⁺}
(M × V × n - factor)_{Ce⁴⁺} = (M × V × n - factor)_{Sn²⁺}
1 × 40 × (4 - n) = 1 × 20 × 2
40 × (4 - n) = 40
4 - n = 1
n = 4 - 1
n = 3

6.7 gm sample of $Na_2C_2O_4$ is titrated with 40 ml, 0.02 M KMnO₄ solution in acidic medium. Calculate % purity of original sample.

A2 Na₂⁺³C₂O₄ + KMnO₄
$$\xrightarrow{H^+} Mn^{+2}n^{2+} + CO_2$$

(Equivalent)<sub>Na₂C₂O₄ = (Equivalent)_{KMnO₄}
 $\frac{x}{134} \times 2 = \left(0.02 \times \frac{40}{1000} \times 5\right)$
 $\frac{x}{67} = 0.1 \times \frac{4}{100}$
 $x = 0.1 \times \frac{4}{100} \times 67$
 $x = \frac{26.8}{100}$
 $x = 0.268$
Now, % purity = $\frac{0.268}{6.7} \times 100$
% purity = 4 %</sub>

An aqueous solution of H2O2 is diluted 20 times. If 100 ml of this diluted solution requires 200 ml, 0.1N K2Cr2O7 solution for complete titration in acidic medium, then calculate volume strength of the original H2O2 solution.

A3 Molarity of original H₂O₂ solution is "x" M

Molarity of diluted H_2O_2 solution = $\frac{x}{20}M$ $K_2Cr_2O_7 + H_2O_2 \longrightarrow Cr^{3+} + O_2$

 $\therefore \text{ Milli (Equivalent)}_{K_2Cr_2O_7} = (\text{Milli Equivalent})_{H_2O_2}$

$$0.1 \times 200 = \frac{x}{20} \times 100 \times 2$$
$$x = 2 M$$

 \therefore Volume strength = 2×11.2 = 22.4 V

43.

Different Types of Titration

Illustration:

Q1 0.84 g iron ore containing 'x' percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required 'x' ml of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the normality of dichromatic solution.

$$A1 \qquad Fe^{2+} + Cr_{2}O_{7}^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

 $(Equivalent)_{Fe} = (Equivalent)_{K_2Cr_2O_7}$ from law of equivalance

$$\frac{0.84 \times \frac{x}{100}}{56} \times 1 = \frac{x \times N}{1000}$$
$$\Rightarrow N = \frac{0.84 \times 100}{56 \times 100} = 0.15 \text{ eq/L}$$

An equimolar mixture of Na₂C₂O₄ and H₂C₂O₄ required V₁ litre of 0.1 M KMnO₄ in acidic medium for complete oxidation. The same amount of the mixture required V₂ litre of 0.2 M NaOH for neutralization. The ratio of V₁ to V₂ (V₁/V₂) is:

(A) 2:5	(B) 1:2
(C) 4:5	(D) None of these

A2 (A)

Case-I: Equimolar mixture of $Na_2C_2O_4$ and $H_2C_2O_4$ required V₁ L of 0.1M KMnO₄ in acidic medium.

As the mixture is equimolar, 1 mole of each are present.

 $\therefore \qquad \text{Eq. of } \text{Na}_2\text{C}_2\text{O}_4 + \text{Eq. of } \text{H}_2\text{C}_2\text{O}_4 = \text{Eq. of } \text{KMnO}_4$ $1 \times 2 + 1 \times 2 = 0.1 \times \text{V}_1 \times 5$ $(\therefore \text{ equivalent} = \text{mole} \times \text{valence factor})$ $\text{V}_4 = \frac{4}{3}$

$$V_1 = 8 L$$

Case – II: Equimolar mixture of $Na_2C_2O_4$ and $H_2C_2O_4$ required V_2L of 0.2 M NaOH for neutralization.

$$\begin{array}{ll} \left(\text{Equivalent} \right)_{\text{Na}_2\text{C}_2\text{O}_4} + & \left(\text{Equivalent} \right)_{\text{H}_2\text{C}_2\text{O}_4} &= \left(\text{Equivalent} \right)_{\text{NaOH}} \\ & 1 \times 2 + 1 \times 2 = \text{V}_2 \times 0.2 \times 1 \\ & 2 + 2 = \text{V}_2 \times 0.2 \times 1 \\ & 2 + 2 = \text{V}_2 \times 0.2 \\ & \text{V}_2 = 20 \text{L} \\ & \vdots & \frac{\text{V}_1}{\text{V}_2} = \frac{8}{20} = 2 \div 5 \end{array}$$

Redox Reaction

Iodimetric Titration:

It is used to determine strength of a reducing agent by direct titration of it with standard solution of I₂
 i.e.

Iodometric Titration:

- It is used to determine strength of an oxidizing agent
- It is a two-step process as following:

Step-I:

Oxidising agent +
$$I^-(aq.) \longrightarrow Product + I_2$$

(excess)

Step-II:

$$\underset{(\text{evolved})}{\text{I}_2} + \underbrace{2Na_2S_2O_3}_{\text{Sodium thiosulphate}} \longrightarrow Na_2S_4O_6 + 2Nal$$

$$\begin{bmatrix} (Equivalent)_{0.A} \end{bmatrix} = \begin{bmatrix} (Equivalent)_{l_2} \end{bmatrix}_1 \qquad ...(1)$$
$$\begin{bmatrix} (Equivalent)_{l_2} \end{bmatrix}_2 = \begin{bmatrix} (Equivalent)_{Hypo} \end{bmatrix} \qquad ...(2)$$

 \therefore Moles of I₂ in both reactions are same.

Also

$$(n - factor_{l_2})_1 = 2$$
$$(n - factor_{l_2})_2 = 2$$
$$\Rightarrow (Eq_{l_2})_1 = (Eq_{l_2})_2$$

So,

$$(Eq)_{O.A} = (Eq.)_{hypo}$$

Redox Reaction

Illustration:

50 ml KMnO4 solution is mixed with excess of KI solution in acidic medium. The liberated I2 requires 200 ml of 0.25 M Na2S2O3 solution for complete titration. Calculate molarity of KMnO4 solution.

A1 Given

 $\begin{array}{l} \mathsf{KMnO}_4 + \mathsf{I}^{\scriptscriptstyle -} & \longrightarrow \mathsf{Mn}^{2+} + \mathsf{I}_2 \\ \mathsf{I}_2 + \mathsf{Na}_2 \mathsf{S}_2 \mathsf{O}_3 & \longrightarrow \mathsf{Na}_2 \mathsf{S}_4 \mathsf{O}_6 + \mathsf{Nal} \end{array}$ Volume of $KMnO_4$ solution = 50 ml Volume of $Na_2S_2O_3$ solution = 200 ml $\therefore (Mill Equivalent)_{KMnO_4} = (Mill Equivalent)_{Na_2S}$ $M \times 50 \times 5 = 0.25 \times 200 \times 1$ $M = \frac{0.25 \times 200 \times 1}{50 \times 5}$ Molarity of $[KMnO_4] = 0.2 M$

25 ml of household bleach solution was mixed with 30 ml of 0.50 M KI and 10 ml of 4 N acetic acid. In the titration of the liberated iodine, 48 ml of 0.25 N Na₂S₂O₂ was used to reach the end point. The molarity of the household bleach solution is: (C) 0.24 M (B) 0.96 M (D) 0.024 M

(A) 0.48 M

 $Cl_2 + l^- \longrightarrow l_2 + Cl^ I_2 + Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + Nal$ $(n - factor)_{I_2}$ is same in both steps (Molarity)_{Bleach} = $\frac{x}{Volume} = \frac{6}{25} = 0.24 \text{ M}$ $A \longrightarrow B$ Note: $B \longrightarrow C$ All If n – Factor of B in both are same $(Eq.)_A = (Eq.)_C$ If n – Factor of B are different $(Eq._B)_1 \neq (Eq._B)_2$, then apply mole method for solving

10 ml of $K_2C_2O_4$ solution is mixed with excess of KIO₃ solution. The evolved I₂ requires 20 ml, 0.5 M hypo solution for complete titration. Determine the molarity of $K_2C_2O_4$ solution.

A3
$$K_2C_2O_4 + KIO_3 \longrightarrow I_2 + CO_2$$

 $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$
(Milli Equivalent)_{I2} = (Milli Equivalent)_{Na2S2O3} (Muilli Equivalent)_{K2C2O4} = (Milli Equivalent)_{I2}
 $n \times 2 = 0.5 \times 20 \times 1$
 $n = \frac{10.0 \times 1}{2}$
 $n = 5 \text{ m.mole}$ (Muilli Equivalent)_{K2C2O4} = (Milli Equivalent)_{I2}
 $M \times 10 \times 2 = 5 \times 10$
 $M = \frac{50}{20}$
 $M = 2.5 \text{ M}$

To measure the quantity of MnCl₂ dissolved in an aqueous solution, it was completely converted to KMnO₄ using reaction,

 $MnCl_2 + K_2S_2O_8 + H_2O \rightarrow KMnO_4 + H_2SO_4 + HCl (Equation not balanced)$ Few drops of concentration HCl were added to this solution and gently warmed. Further oxalic acid (225 mg) was added in portions till the

colour of the permanganate ion disappeared.

The quantity of $MnCl_2$ (in mg) present in the initial solution is _____ (Atomic weight in g mol⁻¹; Mn=55, Cl=35.5)

A4 $MnCl_2 \longrightarrow MnO_4^-$

 $MnO_4^{-} + H_2C_2O_4 \longrightarrow Mn^{2+} + CO_2$

 $(n - Factor)_{MnO_{4}^{-}} \longrightarrow same in both reaction$

$$\begin{split} & \left(\text{Equivalent}\right)_{C_2O_4^{2-}} = \left(\text{Equivalent}\right)_{\text{MnO}_4^{-}} \\ & 2 \times \frac{0.225}{90} = \text{moles} \times 5 \\ \Rightarrow \qquad \text{moles}_{\text{M}_n\text{O}_4^{-}} = 0.001 \\ & \left(\text{Equivalent}\right)_{\text{MnCl}_2} = \left(\text{Equivalent}\right)_{\text{MnO}_4^{-}} \\ & \text{Now,} \qquad \frac{W_{\text{MnCl}_2}}{(55 + 71)} \times 5 = 0.001 \times 5 \end{split}$$

 $W_{MnCl_2} = 0.001 \times (55 + 71) \text{ gm}$ $W_{MnCl_2} = 126 \text{ mg}$

Given quantity of $MnCl_2$ dissolved in an aqueous solution was completely converted to $KMnO_a$.

:. Quantity of MnCl₂ present in the initial solution = 126 mg

Back Titration, Double Indicator Titration

Back Titration:

A multistep process which can be used for both redox as well as non-redox reactions.

Step-I:

Step-II:

 $B + C \longrightarrow product$ (remaining)

$$\left(\mathsf{Eq}_{\mathsf{B}}\right)_{2} = \left(\mathsf{Eq}\right)_{2}$$

 $(n_B)_1 + (n_B)_2 = Initial moles of B (Given)$

• If n-factor of B in both are same:

 $(Eq._B)_{Total} = (Eq.)_A + (Eq.)_C$

• If n-factor of B in both are different: First solve reaction in steps (2) and find $(n_B)_2$. Now, $(n_B)_1 = (n_B)_{given} - (n_B)_2$ Now solve reaction in step (1) and find A.

Illustration:

50 gm of a sample of Ca(OH)₂ is dissolved in 50 ml of 0.5 N HCl solution. The excess of HCl was titrated with 0.3 N NaOH. The volume of NaOH used was 20 cc. Calculate % purity of Ca(OH)₂ sample.

A1

 $Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$

 $\begin{array}{ll} \mathsf{HCl} & + \mathsf{NaOH} \longrightarrow \mathsf{NaCl} + \mathsf{H}_2\mathsf{O} \\ (\mathsf{Remaining}) \end{array}$

Let 'x' gm of Ca(OH)₂ present in sample n-factor of HCl is same in both. So, \Rightarrow

$$0.5 \times \frac{50}{1000} = \left(\frac{x}{74} \times 2\right) + \left(0.3 \times \frac{20}{1000}\right)$$
$$\frac{25}{1000} = \frac{x}{37} + \frac{6}{1000}$$
$$\frac{25}{1000} - \frac{6}{1000} = \frac{x}{37}$$
$$\frac{19}{1000} = \frac{x}{37}$$
$$x = \frac{19}{1000} \times 37$$
$$x = \frac{703}{1000} = 0.703 \text{ g}$$

 $(Eq.)_{HCl} = (Eq.)_{Ca(OH)_2} + (Eq.)_{NaOH}$

 \Rightarrow

A2

% purity =
$$\frac{\text{Mass of Ca(OH)}_2}{\text{Mass of sample}} \times 100 = \frac{0.703}{50} \times 100 = 1.406\%$$

9.0 g of an ammonia solution is treated with 50 ml 0.5 N H₂SO₄ solution, 20 ml of 0.1 N NaOH is required for back titration. What is the percentage of ammonia in the solution?

Let mass of pure NH₃ = x gm

$$(Eq.)_{H_2SO_4} = (Eq.)_{NH_3} + (Eq.)$$

$$0.5 \times \frac{50}{1000} = \left(\frac{x}{17} \times 1\right) + \left(0.1 \times \frac{20}{1000}\right)$$

$$\frac{25}{1000} = \frac{x}{17} + \frac{2}{1000}$$

$$\Rightarrow \frac{25}{1000} - \frac{2}{1000} = \frac{x}{17}$$

$$\Rightarrow \frac{23}{1000} \times 17 = x$$

$$\Rightarrow x = \frac{391}{1000} = 0.391 \text{ gm}$$

$$\therefore \% \text{ NH}_3 = \frac{0.391}{9} \times 100 = 4.34\%$$

Redox Reaction

40 ml solution of Na₂C₂O₄ is treated with 100 ml, 0.1 M KMnO₄ in acidic medium, the excess of MnO₄⁻ solution requires 10 ml of 0.05 M H₂O₂ solution in basic medium for complete titration. Calculate molarity of Na₂C₂O₄.

$$C_{2}O_{4}^{2-} + MnO_{4}^{-} \xrightarrow{H^{*}} Mn^{2+} + CO_{2} \qquad ...(1)$$

$$(MnO_{4}^{-} + H_{2}O_{2} \xrightarrow{OH^{-}} MnO_{2} + O_{2} \qquad ...(2)$$
(Remaining)
$$n-factor of MnO_{4}^{-} is differed in both$$
For reaction 2,
$$(m. eq.)_{MnO_{4}^{-}} = (m. eq.)_{H_{2}O_{2}}$$
m. moles $\times 3 = 0.05 \times 10 \times 2$
m. moles $\times 3 = 0.05 \times 10 \times 2$
m. moles $_{MnO_{4}^{-}} = \frac{5 \times 10 \times 2}{100 \times 3}$
m. moles $_{MnO_{4}^{-}} = \frac{1}{3}$
m.moles of $(MnO_{4}^{-})_{Total} = 0.1 \times 100 = 10$ m.mole
m.moles of MnO_{4}^{-} used in 1 reaction $= 10 - \frac{1}{3} = \frac{29}{3}$ m.mole
For reaction (1):
$$(m. eq.)_{Na_{2}C_{2}O_{4}} = (m. eq.)_{MnO_{4}^{-}}$$
 $M \times 40 \times 2 = \frac{29}{3} \times 5$
 $M = \frac{29}{3} \times \frac{5}{80} = \frac{145}{240} = \frac{29}{48}$ mol / L

Double Indicator Titration:

The titration consisting two equivalence points which are detected by two different indicators.

Na₂CO₃(aq.) vs (HCl(aq.)

- i) When all Na_2CO_3 consume to give $NaHCO_3$, \Rightarrow 1st equivalence point is reached Suitable indicator = Phenolphthalein
- ii) Now on further addition of HCl NaHCO₃ + HCl \rightarrow H₂CO₃ + NaCl (Neutral) When all NaHCO₃ consumed to give H₂CO₃ \Rightarrow 2nd equivalence point is reached

Suitable indicator = Methyl orange

- If alone phenolphthalein is used then only 1st equivalence point in detected.
- If alone methyl orange is used then only 2nd equivalence point is detected.
- To detect both equivalence point, initially phenolphthalein is mixed and after 1st equivalence point, Methyl orange should be mixed.

Illustration:

In the mixture of (NaHCO₃ + Na₂CO₃), volume of HCl required in 'x' ml with phenolphthalein indicator and y ml with methyl orange later in the same titration. Hence volume of HCl for complete reaction of Na₂CO₃ is:
 (A) 2x
 (B) y
 (C) x/2
 (D) (y-x)

A1 A

Now, methyl orange is added to detect $2^{\rm nd}$ equivalence point NaHCO₃ + HCl — → H₂CO₃ + NaCl

$$(m.eq)_{HCl} = (m.eq)_{NaHCO_3}$$

$$N \times y = (a + b) \times 1$$

$$Na_2CO_3 \xrightarrow{HCl} H_2CO_3$$

$$(Eq)_{Na_2CO_3} = (Eq)_{HCl}$$

$$b \times 2 = N \times V$$

$$(Nx) \times 2 = N \times V$$

$$V = \frac{2Nx}{N}$$

$$V = 2x$$

: volume of HCl for complete reaction is 2x ml

Q2 0.1 g of a solution containing Na ₂ CO ₃ and NaHCO ₃ requires 10 ml of 0.01 N H neutralization using phenolphthalein as an indicator. Weight percent of Na				10 ml of 0.01 N HCl for ht percent of Na ₂ CO ₃ in
	solution is			
	(A) 25	(B) 32	(C) 50	(D) None of these

A2 D (m.eq.)_{Na₂CO₃} = (Eq)_{HCl}

$$\Rightarrow$$

 \Rightarrow

:. Wt. % of Na₂CO₃ =
$$\frac{106 \times 10^{-4}}{0.1} \times 100 = 10.6\%$$

 $x = 106 \times 10^{-4} gm$

 $\frac{x}{106} \times 1 = 0.01 \times \frac{10}{1000}$ $x = \frac{0.1}{1000} \times 106$

A mixture of NaOH and Na2CO3 required 25 ml of 0.1 M HCl using phenolphthalein as the indicator. However, the same amount of the mixture required 30 ml of 0.1 M HCl when methyl orange was used as the indicator. The molar ratio of NaOH and Na₂CO₃ in the mixture was:

A3 4:1

 \Rightarrow

Let m.moles of NaOH = 'x' m.mole and m.moles of Na₂CO₃ = 'y' m. mole Phenolphthalein is added to detect 1st equivalence point (NaHCO₃) First: All NaOH \xrightarrow{HCl} NaCl; Then Na₂CO₃ \xrightarrow{HCl} NaHCO₃ (mod) $\xrightarrow{(mod)}$ (mod)

$$(m.eq.)_{HCl} = (m.eq.)_{NaOH} + (m.eq.)_{Na_2CO_3}$$

 $0.1 \times 25 \times 1 \times 1 = x(1) + y(1)$
 $x + y = 2.5 m.mole$...(1)

Titration with methyl orange is added to detect 2nd equivalence point direct

$$\begin{split} \text{NaOH} & \xrightarrow{\text{HCl}} \text{NaCl} \\ \text{NaCO}_3 & \xrightarrow{\text{HCl}} \text{H}_2\text{CO}_3 \\ & \left(\text{m.eq.}\right)_{\text{HCl}} = \left(\text{m.eq.}\right)_{\text{NaOH}} + \\ & \left(\text{m.eq}\right)_{\text{Na}_2\text{CO}_3} \\ & 0.1 \times 30 \times 1 = x(1) + y(2) \\ \Rightarrow & x + 2y = 3 \text{ m.mole} \\ & \dots(2) \\ \Rightarrow x = 2 \text{ m mole and } y = 0.5 \text{ m. mole, on solving (1) & (2).} \\ \text{Ratio of mole of NaOH & Na}_2\text{CO}_3 = \frac{2}{0.5} = 4 : 1 \end{split}$$

Redox Reaction

Illustration:

100 ml solution of NaOH and Na₂CO₃ was first titrated with N/10 HCl in presence of HPh, 17.5 ml is required to end point. After this MeOH was added and 2.5 ml of same HCl is required. The amount of NaOH in mixture is
 (A) 0.06 g per 100 ml
 (B) 0.06 g per 200 ml
 (C) 0.05 g per 100 ml
 (D) 0.012 g per 200 ml

A1

Α

Let 'x' m mole of NaOH in 100 ml solution and 'y' m.ole of $\rm Na_{2}CO_{3}$ in 100 ml solution.

 $HPh \Rightarrow 1^{st}$ equivalence point (NaHCO₃)

\Rightarrow	$(m.eq.)_{HCl} = (m.eq.)_{NaOH}$	+	$(m.eq.)_{Na_2CO_3}$
\Rightarrow	$\frac{1}{10} \times 17.5 = x(1) + y(1)$		
\Rightarrow	x + y = 1.75		(1)
	2 nd equivalence point		

MeOH \Rightarrow 2nd equivalence point.

⇒
$$(m.eq.)_{HCl} = (m.eq.)_{NaHCO_3}$$

⇒ $\frac{1}{10} \times 2.5 = y(1)$
⇒ $y = 0.25 m.mole$

 \Rightarrow x = 1.5 m.mole

∴ Weight of NaOH = 1.5×40×10⁻³ = 60 gm

Hardness of water

Soft water: Water which produces lathers (foam) upon mixing of soap into it easily. **Hard water:** Water which does not produce foam with soap due to presence of Ca²⁺(aq.) or Mg²⁺(aq.) in water.

```
Sodium stearate : C<sub>17</sub>H<sub>35</sub>COONa (soap)
```

 $C_{17}H_{35}COO^{-}(aq.) + Ca^{2+}(aq.) \text{ or } Mg^{2+}(aq.) \longrightarrow (C_{17}H_{35}COO)_{2}Ca \text{ or } Mg(C_{17}H_{35}COO)_{2}$

ppt.

• These Ca²⁺ or Mg²⁺ ions are furnished by their water soluble salts (bicarbonates, chlorides or sulphates only)

i.e. $Ca(HCO_3)_2$ $Mg(HCO_3)_2$ $CaCl_2$ $MgCl_2$ $CaSO_4$ Hardness causing salt

Degree of Hardness

- It is the measure of total hardness causing salt present in water.
 - Measured in ppm as following: * CaCO₃ is hardness causing. For a water sample:

 $\sum (m.eq.)_{salts} = (m.eq.)_{CaCO_3}$ $\therefore n - factor of all = 2$ $\Rightarrow \sum (n)_{salts} = (n)_{CaCO_3}$ Illustration:

	One litre of a sample of hard water contains 1 mg of CaCl2 and 1 mg of MgCl2 Then the total hardness in terms of parts of CaCO3 per 106 parts of water by mass is:				
	(A) 1.954	(B) 1.260	(C) 0.946	(D) None of these	

A1 (A)

1 litre water means 1000 gm Given: Mass of CaCl₂= 1 mg Moles of CaCl₂= $\frac{10^{-3}}{111}$ mole Mass of MgCl₂= 1 mg Moles of MgCl₂= $\frac{10^{-3}}{95}$ mole Hardness = $\frac{\left(\frac{10^{-3}}{111} + \frac{10^{-3}}{95}\right)}{1000 \text{ g}} \times 100 \text{ gm} \times 10^6$

Hargness = 1.954 ppm

A given sample of water containing the following impurities: Mg(HCO₃)₂ = 73 mg/L, Ca(HCO₃)₂ = 162 mg/L CaSO₄ = 136 mg/L, MgCl₂ = 95 mg/L CaCl₂ = 111 mg/L and NaCl = 100 mg / L Then the total hardness (temporary and permanent) of above water sample is: (A) 300 ppm (B) 350 ppm (C) 450 ppm (D) 500 ppm

A2 c

Let volume of water =1 L = 1000 ml

Mass of water = 1000 gm

Hardness = $10^{-3} \frac{\left[\frac{73}{146} + \frac{162}{162} + \frac{136}{136} + \frac{95}{95} + \frac{111}{111}\right] \times 100 \times 10^{6}}{1000} = 450 \text{ ppm}$

Removal of Hardness:

Ca²⁺(aq.) or Mg²⁺(aq.) (Water soluble salts) Water insoluble salt of Ca or Mg (Precipitate)

• Temporary hardness:

It is easily removed by following process:

- a) By boiling of water $M(HCO_3)_2(aq.) \rightarrow MCO_3(s) + H_2O(l) + CO_2(g)$
- b) By the addition of Na_2CO_3 M(HCO_3)₂(aq.) + $Na_2CO_3(aq.) \rightarrow MCO_3^{(s)} + 2NaHCO_3(aq.)$
- c) Clarke's process: By the addition of exact amount of Ca(OH)₂, because excess will also impart hardness in water. Ca(HCO₃)₂(aq.) + Ca(OH)₂(aq.) → 2CaCO₃(s) + 2H₂O(l) Mg(HCO₃)₂(aq.) + Ca(OH)₂ → MgCO₃(s) + CaCO₃(s) + 2H₂O(l)

Permanent hardness

- i) By adding Na₂CO₃ or Na₃PO₄. CaSO₄ + Na₂CO₃ \rightarrow CaCO₃ \downarrow + Na₂SO₄ 3CaCl₂ + 2Na₃PO₄ \rightarrow Ca₃(PO₄)₂ \downarrow + 6NaCl
- ii) Ion exchange resins process.

 $\begin{array}{rcl} 2\mathsf{RnH} & + & \mathsf{Ca}^{2+} \longrightarrow & \left(\mathsf{Rn}\right)_2 \mathsf{Ca} & + & 2\mathsf{H}^+ \\ \text{exchanger} & \end{array}$

- iii) Permutit process $Ca^{2+} Na_2Z \rightarrow CaZ + 2Na^+ \rightarrow Ca^{2+} Na_2Z \rightarrow CaZ + 2Na^+$ $Mg^{2+} + Na_2Z \rightarrow MgZ + 2Na^+$ $[Na_2Z \text{ is the sodium zeolite } (Na_2Al_2Si_2O_8H_2O)]$
- iv) Calgon (Calcium gone) process $Na_6(PO_3)_6$ is called Calgon which is written as $Na_2[Na_4(PO_3)_6]$ $Na_4(PO_3)_6]^{2^-} + M^{2^+} \rightarrow Na_2M(PO_3)_6]^{2^-} + 2Na^+$ where $M = Ca^{2^+}/Mg^{2^+}$

Illustration:

60.