Redox Reaction

DISCLAIMER

"The content provided herein are created and owned by various authors and licensed to Sorting Hat Technologies Private Limited ("Company"). The Company disclaims all rights and liabilities in relation to the content. The author of the content shall be solely responsible towards, without limitation, any claims, liabilities, damages or suits which may arise with respect to the same."

Introduction

- Chemical reactions in which reduction and oxidation takes place are known as redox reactions.
- In order to define oxidation and reduction, there were many concepts which are as following:

Classical concept

OXIDATION
Addition of oxygen
or
Removal of hydrogen
Addition of O
Oxidation of Mg
e.g. $\mathrm{Mg}_{2} \longrightarrow 2 \mathrm{MgO}$
OXidation of HCl

REDUCTION

e.g.

 Reduction of Cl_{2}
e.g.

Reduction of $\mathrm{H}_{2} \mathrm{O}$, Oxidation of $\mathrm{H}_{2} \mathrm{O}$

Note: Above definitions failed to define oxidation and reduction in all reactions. Hence, its concept was modified later as following:

OXIDATION	REDUCTION
Addition of electronegative element	
Or	Addition of electropositive element
or	
Removal of electropositive element	

REDUCTION

Removal of electro negative element
e.g.

Oxidation and reduction of HCl

Modern Concept

- It is an electronic concept.
- This concept is based upon transfer of electrons.
oxidation
The process in which substance
looses some electrons.

REDUCTION

The process in which substance gains some electrons.

(i)
e.g.

Gain of e-

Oxidation of Zn and reduction of Cu^{2+}.
(ii)
e.g.

Oxidation of H_{2} and reduction of Ag^{+}.

Note: Modern concept can be used to identify oxidation and reduction only in ionic reactions.

Oxidation Number

- The average charge per atom possessed by an element in a specie is called "oxidation number" of that element in that species (atom, molecule, ion).
- In a specie, the charge is developed on atoms due to difference in electronegativity between bonded atoms or due to transfer of electrons.

e.g. H_{2}

(Oxidation number $)_{\mathrm{H}}=\frac{\text { Total charge on } \mathrm{H} \text { atoms }}{\text { Total number of } \mathrm{H}-\text { atoms }}$

$$
\begin{aligned}
& =\frac{0}{2} \\
& =0
\end{aligned}
$$

Oxidation number of hydrogen in $\mathrm{H}_{2}=$ zero

e.g. i) HCl

$$
\begin{aligned}
& (\mathrm{O} . \mathrm{N})_{\mathrm{H}}=\frac{(+1)}{1}=+1 \\
& (\mathrm{O} . \mathrm{N})_{\mathrm{Cl}}=\left(\frac{-1}{1}\right)=-1
\end{aligned}
$$

ii) HCN

$(\mathrm{O} . \mathrm{N})_{\mathrm{H}}=\frac{+1}{1}=+1$
$(\mathrm{O} . \mathrm{N})_{\mathrm{C}}=\frac{-1+3}{1}=+2$
$(\mathrm{O} . \mathrm{N})_{\mathrm{N}}=\frac{-3}{1}=-3$

Order of electronegativity $\mathrm{H}<\mathrm{C}<\mathrm{N}$

Note: Oxidation number may be positive, negative, integer, fractional or even zero.
e.g.
i) $\mathrm{C}_{3} \mathrm{O}_{2}$ (carbon suboxide)

Now,

$$
\begin{aligned}
& (\mathrm{O} . \mathrm{N})_{\mathrm{O}}=\frac{-2-2}{2}=(-2) \\
& (\mathrm{O} . \mathrm{N})_{\mathrm{C}}=\frac{+2+\mathrm{O}+2}{3}=\left(\frac{+4}{3}\right)
\end{aligned}
$$

ii) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

$$
\begin{aligned}
(\mathrm{O} . \mathrm{N})_{\mathrm{Na}} & =\frac{+1+1}{2}=(+1) \\
(\mathrm{O} . \mathrm{N})_{\mathrm{O}} & =\frac{-12}{6}=(-2) \\
(\mathrm{O} . \mathrm{N})_{\mathrm{S}} & =\frac{+5+0+0+5}{4} \\
& =(+2.5)
\end{aligned}
$$

Note: An element can show different oxidation number in different species.
e.g.
i) $\stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}$ and $\quad \stackrel{-4}{\mathrm{C}} \mathrm{H}_{4}$

Oxidation number of carbon in CO_{2} is +4 and in CH_{4} is -4 .
ii) $\stackrel{0}{\mathrm{H}_{2}}, \stackrel{+1}{\mathrm{H} \mathrm{Cl}}$ and NaOH

Oxidation number of hydrogen in $\mathrm{H}_{2}, \mathrm{HCl}$ and NaOH is $0,+1$ and +1 respectively.

Determination of Oxidation Number

For a specie, the sum of oxidation number of each atom present is equal to the charge possessed by that specie.
Let $A_{x} B_{y} C_{z}$

- $x(p)+y(q)+z(r)=0$
$\left(A_{x} B_{y} C_{z}\right)^{\phi}$
- $x(p)+y(q)+z(r)=\phi$
e.g.
i) $\mathrm{H}_{2} \mathrm{O}$
- $2(+1)+1(-2)=0$
ii) CF_{4}
- $1(+4)+4(-1)=0$
iii) CO_{2}
- $1(+4)+2(-2)=0$

Oxidation Number of Some Common Elements

- For elements present in their free state (Natural form at room temperature and pressure), the oxidation number is zero.
e.g.
$\left.\begin{array}{llllll}\mathrm{H}_{2}, & \mathrm{He}, & \mathrm{C}, & \mathrm{N}_{2}, & \mathrm{O}_{2}, & \mathrm{~F}_{2} \\ \mathrm{Na}, & \mathrm{Mg}, & \mathrm{S}_{8}, & \mathrm{P}_{4}, & \mathrm{Cl}_{2} \\ \mathrm{Fe}, & \mathrm{Zn}, & \mathrm{Ag}, & \text { etc. } & \end{array}\right\}$ Oxidation number =0
- All IA group elements show (+1) oxidation number in their compounds.
i.e.
$\left.\begin{array}{l}\mathrm{Li} \\ \mathrm{Na} \\ \mathrm{K} \\ \mathrm{Rb} \\ \mathrm{Cs}\end{array} \quad\right\}$ In compounds, Oxidation number $=(+1)$ always
- All IIA group elements show (+2) oxidation numbers in their compounds
i.e.
$\left.\begin{array}{l}\mathrm{Be} \\ \mathrm{Mg} \\ \mathrm{Ca} \\ \mathrm{Sr} \\ \mathrm{Ba}\end{array}\right\}$ In compounds, Oxidation number $=(+2)$ always

Note: Fluorine is most electronegative element hence always show (-1) oxidation number in its compounds.

- For hydrogen

General oxidation number $=(+1)$
But, In metal hydrides, (oxidation number) ${ }_{H}=(-1)$
(Electronegativity) $_{\text {Metal }}<$ (Electronegativity $_{)_{H}}$

$$
\begin{aligned}
& \text { e.g. } \\
& \begin{aligned}
\mathrm{LiH} \Rightarrow 1(+1)+1(x) & =0 \\
\Rightarrow \quad x & =-1 \\
\mathrm{CaH}_{2} \Rightarrow 1(+2)+2(x) & =0 \\
\Rightarrow \quad x & =-1
\end{aligned}
\end{aligned}
$$

- For oxygen

General oxidation number $=(-2)$ in oxides.
But, In peroxides, oxidation number $=(-1)$
In superoxides, oxidation number $=\left(-\frac{1}{2}\right)$

$\mathbf{N a}_{2} \mathbf{O}$	$\mathbf{N a}_{2} \mathbf{O}_{2}$	$\mathbf{N a O}$
$2(+1)+1(x)=0$	$2(+1)+2(x)=0$	$1(+1)+2 x=0$
$x=(-2)$	$x=(-1)$	$x=\left(-\frac{1}{2}\right)$
Oxide	Peroxide	Superoxide

- Compounds of oxygen with fluorine

$\mathbf{O F} \mathbf{2}_{2}$	$\mathbf{O}_{\mathbf{2}} \mathbf{F}_{\mathbf{2}}$
$1(x)+2(-1)=0$	$2(x)+2(-1)=0$
$x=(+2)$	$x=+1$

- p-block Elements

Generally have a range of oxidation number of following:

$$
(n-8) \text { to }(+n)
$$

Where, ' n ' is number of valence electrons.

- For halogens (except F)

Oxidation Number Range $=(-1)$ to $(+7)$

$$
\left[\begin{array}{llllll}
-1 \\
\mathrm{Cl}^{-}, & \mathrm{Cl}_{2}, & \stackrel{+1}{\mathrm{Cl} \mathrm{O}}, & \stackrel{+3}{\mathrm{ClO}_{2}^{-}} & \stackrel{+5}{\mathrm{Cl} \mathrm{O}} \mathrm{O}_{3}^{-}, & \stackrel{+7}{\mathrm{Cl} \mathrm{O}}{ }_{4}^{-}
\end{array}\right]
$$

- Oxidation number of Chlorine

Case - I	Chlorine in chlorides	Cl^{-} $1(x)=-1$ $\mathrm{x}=-1$
Case - II	Chlorine molecule	Cl_{2} $2(x)=0$ $\mathrm{x}=0$
Case - III	Chlorine with more electronegative atom	ClO^{-1} $1(x)+1(-2)=-1$ $\mathrm{x}=+1$

- For chalcogens except oxygen

Oxidation number range $=(-2)$ to $(+6)$
e.g. $\stackrel{-2}{\mathrm{~S}}^{2-}, \stackrel{-1}{\mathrm{~S}}_{2}^{2-}, \stackrel{0}{\mathrm{~S}} 8, \stackrel{+4}{\mathrm{~S}_{2}}, \stackrel{+6}{\mathrm{~S}_{\mathrm{O}}} \mathrm{O}_{3}$

- For Nitrogen family

Oxidation number $=(-3)$ to $(+5)$

- d-block elements show multiple but fixed oxidation number in their compounds.

```
e.g. \(\quad \mathrm{Fe}=(+2),(+3)\)
\(\mathrm{Ti}=(+2),(+4)\)
\(\mathrm{Cu}=(+2),(+1)\)
\(\mathrm{Mn}=(+2),(+4),(+5),(+6),(+7)\)
\(\mathrm{Cr}=(+6),(+3)\)
\(\mathrm{Zn}=(+2)\)
\(A g=(+1)\) etc.
```


Note: Maximum possible oxidation number of an element in species is

 +8 which is for Osmium and Xenon in their particular compounds.e.g.
CrO_{5}
Oxidation of Cr
$1(x)+5(-2)=0$
$x=(+10)$
Not possible
i.e.

i.e. $(\mathrm{O} . \mathrm{N})_{\mathrm{Cr}}=(+6)$

Note: In calculations, if O.N of p-block elements comes beyond the range then it is incorrect.
e.g.
$+1 \mathrm{x}-2$
$\mathrm{H}_{2} \mathrm{SO}_{5}$
Oxidation no of S
$2(+1)+(x)+5(-2)=0$
$X=+8$

i.e. $(O . N)_{s}=(+6)$

Practice questions

1. Calculate the oxidation number of underlined elements in the following compounds:
i) $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}$

$$
\begin{aligned}
3 x+4(-2) & =0 \\
3 x & =8 \\
x & =\frac{8}{3}
\end{aligned}
$$

Oxidation number of Fe is $+8 / 3$.
ii) FeO

$$
\begin{array}{r}
x+(-2)=0 \\
x=+2
\end{array}
$$

Oxidation number of Fe is +2 .
iii) $\quad \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

Oxidation number of S in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

$$
\begin{aligned}
\Rightarrow \quad & 2(+1)+4 x+6(-2)=0 \\
2 & +4 x-12=0 \\
& 4 x=10 \\
& x=\frac{10}{4} \\
& x=+2.5
\end{aligned}
$$

iv) $\underline{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$2(x)+5(1)+(-2)+(1)=0$
$2 x+5-2+1=0$
$2 x=-4$
$x=-2$
Oxidation number of C in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is -2 .
v) $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{FeSO}_{4} \Rightarrow \mathrm{x}+(-2)=0 \Rightarrow \mathrm{x}=+2$
$\mathrm{NH}_{4}^{+} \Rightarrow x+4(1)=+1 \Rightarrow x=-3$
Oxidation number of Fe in $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}=+2$
Oxidation number of N in $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}=-3$
vi) CO_{2}
$x+2(-2)=0$
$x=+4$
Oxidation number of C in CO_{2} is +4 .
vii) FeS_{2}
$(+2)+2(x)=0$
$2 x=-2$
$x=-1$
O.N. of S in FeS_{2} is (-1).
viii) PbS
$x+(-2)=0$
$x=+2$
Oxidation number of Pb in PbS is +2 .
ix) \underline{C}_{2}
$x+2(-2)=0$
$x-4=0$
$x=+4$
Oxidation number of C in CS_{2} is +4 .
x) CrO_{5}
$x+(-2)+4(-1)=0$
$x-2-4=0$
O.N. of Cr in CrO_{5} is +6

Note: 4 oxygen atoms in peroxide linkages.

xi) $\quad\left(\underline{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$
$2(2 x+5(1))+(-2)=0$
$4 \mathrm{x}+8=0$
$4 x=-8$
$x=-8 / 4=-2$
Oxidation number of N in $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$ is (-2).
xii) $\quad \mathrm{N}_{2} \mathrm{O}_{5}$
$2(x)+5(-2)=0$
$2 x-10=0$
$\Rightarrow \quad 2 x=10$
$\Rightarrow \quad x=10 / 2$
$\Rightarrow \quad x=+5$
Oxidation number of N in $\mathrm{N}_{2} \mathrm{O}_{5}$ is +5 .
xiii) HCN

Oxidation number of C :
(1) $+x+(-3)=0$
$x=+2$
Oxidation number of N :
$1+(+2)+x=0$
$x=-3$

Oxidation number of C in HCN is (+2).
Oxidation number of N in HCN is (-3).
xiv) $\mathrm{Ba}\left[\mathrm{H}_{2} \mathrm{PO}_{2}\right]_{2}$

Oxidation number of Ba is +2
Oxidation number of P is:
$(+2)+2[2(+1)+x+2(-2)]=0$
$2+2(2+x-4)=0$
$2+4+2 x-8=0$
$2 x-2=0$
$2 x=2$
$\mathrm{x}=+1 \quad \therefore \mathrm{O} . \mathrm{N}$ of P in $\mathrm{Ba}\left[\mathrm{H}_{2} \mathrm{PO}_{2}\right]_{2}$ is $(+1)$
xv) OsO_{4}
$x+4(-2)=0$
$x=8$
Oxidation number of Os in OsO_{4} is (+8).
xvi) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$2(+1)+2(x)+3(-2)=0$
$2+2 x-6=0$
$2 x-4=0$
$2 x=4$
$x=2$
Oxiation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=(+2)$
xvii) $\mathrm{C}_{3} \underline{\mathrm{SO}}_{3} \mathrm{H}$

Oxidation number of C is (-2)
Oxidation number of S is $(+4)$
xix) $\mathrm{Ba}_{2} \mathrm{XeO}_{6}$

Oxidation number of Xe is +8 .
$2(+2)+x+6(-2)=0$
$\mathrm{x}=+8$

xx) $\mathrm{Ba}(\mathrm{SCN})_{2}$

Oxidation number of S is (-2). Oxidation number of C is (+4). Oxidation number of N is (-3).

Select the compound in which chlorine shows oxidation state +7 :
(A) HClO_{4}
(B) HClO_{3}
(C) HClO_{2}
(D) HClO

A1 (A)
a) HClO_{4}
$1+x+4(-2)=0$
$x=+7$
O.N of Cl in HClO_{4} is (+7).
b) HClO_{3}
$(+1)+x+3(-2)=0$
$x=+5$
O.N of Cl in HClO_{3} is (+5).
c) HClO_{2}
$(+1)+x+2(-2)=0$
$x=+3$
$\mathrm{O} . \mathrm{N}$ of Cl in HClO_{2} is (+3).
d) HClO

$$
\begin{aligned}
& (+1)+x+(-2)=0 \\
& x=+1
\end{aligned}
$$

Q2 The oxidation number of C in $\mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}_{,} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4} are respectively.
(A) $+4,+2,0,-2,-4$
(B) $+2,+4,0,-4,-2$
(C) $-4,-2,0,+2,+4$
(D) $-2,-4,0,+4,+2$

A2 (C)
Oxidation number of C in:
(i) CH_{4}

$$
\begin{aligned}
& x+4(1)=0 \\
& x=-4
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{Cl} \tag{ii}\\
& x+3(1)+(-1)=0 \\
& x+3-1=0 \\
& x=-2
\end{align*}
$$

(iii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$x+2-2=0$
$x=0$
(iv) CHCl_{3}
$x+1+3(-1)=0$
$x=+2$
(v) $\quad \mathrm{CCl}_{4}$

$$
x+4(-1)=0
$$

$$
x=+4
$$

The correct order of the increasing oxidation states of nitrogen in $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$, NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{3}$ is:
(A) $\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}$
(B) $\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{NO}_{2}$
(C) $\mathrm{NO}_{2}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}$

A1 a
Oxidation states of N in $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ are:
NO
$x+(-2)=0$
$x=+2$

$$
\begin{aligned}
& \mathrm{NO}_{2} \\
& x+2(-2)=0 \\
& x-4=0 \\
& x=+4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O} \\
& 2 x+(-2)=0 \\
& 2 x=+2 \\
& x=+1
\end{aligned}
$$

$$
\mathrm{N}_{2} \mathrm{O}_{3}
$$

$$
2 x+3(-2)=0
$$

$$
2 x-6=0
$$

$$
x=+3
$$

Oxidation number of oxygen in $\mathrm{K}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}_{2}$ and KO_{2}, respectively, is:
(A) +1, +2 and +4
(B) $+1,+4$ and +2
(C) $-2,-1$ and $\frac{-1}{2}$
(D) $-2,-1$ and $\frac{+1}{2}$

A2 (C)
$\mathrm{K}_{2} \mathrm{O} \longrightarrow$ Oxide
$\mathrm{K}_{2} \mathrm{O}_{2} \longrightarrow$ Peroxide
$\mathrm{KO}_{2} \longrightarrow$ Superoxide

Oxidation:

The process in which oxidation number of element increases is known as oxidation.
e.g.
(i) $\mathrm{Zn}^{0} \longrightarrow+{ }^{+2} \mathrm{Zn}^{2+}$
(ii) $\stackrel{+2}{\mathrm{Fe}^{2+} \longrightarrow}{ }^{+3} \mathrm{Fe}^{3+}$
(iii) $\mathrm{Cl}^{-1} \longrightarrow \mathrm{Cl}_{2}$
(iv) $\stackrel{+4}{\mathrm{MnO}_{2}} \longrightarrow \stackrel{+7}{\mathrm{MnO}_{4}^{-}}$

Reduction:

The process in which oxidation number of element decreases is known as reduction.
e.g.
(i) ${ }_{\mathrm{Br}}^{\mathrm{O}} \longrightarrow \mathrm{Br}^{-1}$
(ii) ${ }^{+5} \mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{Cl}^{-1}$
(iii) $\mathrm{Cu}^{+2} \longrightarrow{ }^{+1} \mathrm{Cu}^{+}$

Note: Alone oxidation or alone reduction never takes place means both process are carried out simultaneously and hence the reaction is collectively known as Redox reaction.
e.g.
(i)

Mg is oxidized. O_{2} is reduced.
(ii)

Oxidation

(iii)

Oxidation

H_{2} is oxidized.
Cl_{2} is reduced.

O is oxidised. H is reduced.
(iv) Oxidation

Zn is oxidized. Cu^{+2} is reduced.
(v)

Oxidation

MnO_{4}^{-}is reduced. $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$ is oxidized.
(vi)

$$
\stackrel{++1-1}{\mathrm{HCl}}+\stackrel{+1-2+1}{\mathrm{NaOH}} \longrightarrow \stackrel{+1}{\mathrm{NaCl}}+
$$

$\mathrm{H}_{2} \mathrm{O}^{+2}$
\because No change in oxidation No.
\Rightarrow Non-redox reaction
(vi)

$$
\stackrel{+2}{\mathrm{CaCO}_{3}^{+4}-2} \longrightarrow \stackrel{+2-2}{\mathrm{CaO}^{-2}}+\stackrel{+4 \mathrm{CO}_{2}^{-2}}{ }
$$

\because No change in oxidation No.
\Rightarrow Non - redox reaction

Oxidizing agent / Oxidant

Substance which oxidizes other substance by getting reduced itself.

Reducing agent / Reductant

Substance which reduces other substances by getting oxidized itself.
e.g.
(i) $\stackrel{0}{\mathrm{Fe}}+\mathrm{H}^{+1} \longrightarrow \mathrm{Fe}^{++}+\quad \begin{gathered}\mathrm{H}^{+} \\ \mathrm{H}_{2}\end{gathered}$
i.e. $\mathrm{Fe}=$ R.A (Reducing agent)
$\mathrm{H}^{+}=$O.A (Oxidizing agent)
(ii)

Oxidation

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is reducing agent.
I^{-}is oxidizing agent.

Illustration:

Which of the following is not a redox change?
(A) $2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow \mathbf{2 H} \mathbf{O}+\mathbf{3 S}$
(B) $2 \mathrm{BaO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaO}_{2}$
(C) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
(D) $2 \mathrm{KClO}_{3} \rightarrow \mathbf{2 K C l}+\mathbf{3 0} \mathbf{2}$
(C)

Non redox reaction means no change in oxidation number.

Q2 In the following reaction

$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
(A) Bromine is oxidized, carbonate is reduced
(B) Bromine is reduced, carbonate is oxidized
(C) Bromine is neither reduced nor oxidizes
(D) Bromine is reduced as well as oxidized

A2 (D)

$$
3 \mathrm{Br}_{2}+\stackrel{+4}{6} \mathrm{CO}_{3}^{-2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{Br}^{-1}+\stackrel{+5}{\mathrm{BrO}_{3}^{-2}}+6 \mathrm{H}^{+4-2} \mathrm{CO}_{3}^{-}
$$

Reduction

In the reaction
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$,
I_{2} act as:
(A) Reducing agent
(B) Oxidizing agent
(C) Oxidizing as well as reducing agent
(D) None of above

A3 (B)
I_{2} get reduced from (0) oxidation state in I_{2} to -1 oxidation state in NaI .

Classification of redox reactions

e.g.
(i)

Reduction
(ii)

Reduction

Intramolecular reaction
$\left.\begin{array}{|l|l|l|l|}\hline \text { (3) } & \text { Combination reactions } & \text { (4) } & \text { Decomposition reactions } \\ \hline \text { (i) } & \begin{array}{l}\text { At reactant side, atleast one element in } \\ \text { free state is present but no element in } \\ \text { free state at product side. } \\ \text { Reactants }\end{array} & \text { (i) } & \begin{array}{l}\text { At reactant side, no element in free } \\ \text { state but in product side, there is } \\ \text { (Atleast one element } \rightarrow \begin{array}{l}\text { (No elements one element in free state } \\ \text { in free state) } \\ \text { i.e. }\end{array} \\ \text { in free state) }\end{array} \\ \left(\begin{array}{l}\text { No element } \\ \text { in free state } \\ \text { at reactant side }\end{array}\right) \rightarrow\left(\begin{array}{l}\text { At least } \\ \text { one element } \\ \text { in state }\end{array}\right.\end{array}\right)$
E.g.
(i) ${\stackrel{-4}{\mathrm{C}} \mathrm{H}_{4}}_{+}^{\stackrel{\circ}{\mathrm{O}}} \underset{\text { Element in free state }}{2} \rightarrow \underbrace{+4-2}_{\text {Noelement in free state }} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Combination Reaction (Intermolecular)
(ii) $\quad \stackrel{0}{\mathrm{P}_{4}}+3 \mathrm{NaOH} \longrightarrow 3 \mathrm{NaH}_{2}{\stackrel{+1}{\mathrm{P}} \mathrm{O}_{2}}_{\text {+ }}^{\text {P }} \mathrm{H}_{3} \quad$ Combination Reaction (Intramolecular)
(iii) $\underbrace{4 \mathrm{NH}_{4} \mathrm{NO}_{2}}_{\begin{array}{c}\text { No element } \\ \text { in free state }\end{array}} \longrightarrow \underbrace{4 \mathrm{~N}_{2}}_{\begin{array}{c}\text { Element in } \\ \text { free state }\end{array}}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad$ Decomposition Reaction (Intramolecular)

(5)	Metal Displacement reactions	(6)	Non - metal displacement reactions
(i)	Ametal ion present in a compound is displaced by a more electropositive metal present in free state.	(i)	A non-metal present in a compound is displaced by a more electronegative non-metal present in free state.
e.g. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow+2$ i.e. $\mathrm{Cu} \mathrm{ZnSO}_{4}+\mathrm{Cu}$ is displaced by Zn	e.g. $2 \mathrm{HBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{Br}_{2}$ i.e. Br is displaced by Cl		

7. Disproportion Reaction

- Redox reactions in which an element present in one single oxidation number at reactant side converts into two different oxidation number at product side showing both oxidation and reduction.
- Means only one element is involved in redox reaction.

> (e.g)
(i) Self decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$

i.e. disproportion reaction
(ii) Disproportion of $\mathrm{KClO}_{\underline{3}}$

Note: Whenever a non metal present in free state reacts with base, the reaction is always disproportion reaction.

(iii) Disproportion of P_{4}

(iv) Disproportion of Halogens

Note: Reverse of disproportionation reaction is known as comproportionation reaction.
(i) $2 \mathrm{H}_{2} \stackrel{-2}{\mathrm{~S}}+\stackrel{+4}{\mathrm{~S}} \mathrm{O}_{2} \rightarrow 3 \stackrel{0}{\mathrm{~S}}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $\stackrel{-3}{\mathrm{~N}} \mathrm{H}_{4} \stackrel{+3}{\mathrm{~N}} \mathrm{O}_{2} \rightarrow \stackrel{\circ}{\mathrm{~N}_{2}}+2 \mathrm{H}_{2} \mathrm{O}$

Illustration:

Q1 White phosphorus reacts with NaOH as:

$\mathbf{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$ is an example of:
(A) Dimerization reaction
(B) Disproportionation reaction
(C) Condensation reaction
(D) Precipitation reaction

A1 в
$\stackrel{\mathbf{O}_{\mathbf{P}}^{4}}{ }+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \stackrel{-3}{\mathrm{P}} \mathrm{H}_{3}+3 \mathrm{NaH}_{2} \stackrel{+1}{\mathrm{~S}} \mathrm{O}_{2}$

Which of the following chemical reactions does not depicts the oxidizing behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(A) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaS}{ }_{4}^{+6} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \stackrel{+1}{\mathrm{Na}} \mathrm{H}_{\mathrm{SO}}^{3}+\mathrm{HCl}$
(C) $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{S} \mathrm{O}_{2}^{+-2} \mathrm{Cl}_{2}^{-1}$

A and C

Oxidising behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$ means tendency to oxidise or reduction of self.
Example: $2 \mathrm{HI}+\mathrm{H}_{2}{\stackrel{+6}{\mathrm{O}_{4}}}_{4} \mathrm{I}_{2}+{\stackrel{+4}{\mathrm{~S}_{2}}+2 \mathrm{H}_{2} \mathrm{O}}^{\text {O }}$
In $1^{\text {st }}$ half $: 2 \mathrm{HI} \longrightarrow \mathrm{I}_{2}$
Oxidation number of I is increases by one thus, oxidation reaction.
In $2^{\text {nd }}$ half $: \mathrm{H}_{2}{\stackrel{+6}{\mathrm{SO}} \mathrm{O}_{4} \longrightarrow \stackrel{+4}{\mathrm{SO}_{2}} \text { }}$
O.N of S decreases by 2 , thus reduction reaction $\& \mathrm{H}_{2} \mathrm{SO}_{4}$ act as oxidising agent.

Balancing of Redox Reactions

Balancing of Redox Reactions:

There are two methods discussed as follows

1. Ion electron method:

This method is applicable for ionic reactions only means it is based upon modern concept.
Step-I: Split the given redox reaction into two half reactions as oxidation and reduction.
Step-II: In both reactions, balance elements other than H and O by hit and trial.
Step-III: Balance O by adding suitable number of $\mathrm{H}_{2} \mathrm{O}$.
Step-IV: To balance hydrogen and oxygen.

> In acidic medium \rightarrow by adding H^{+}
> To balance $\mathrm{O} \longrightarrow$ add $\mathrm{H}_{2} \mathrm{O}$ to side deficit of O and double number of H^{+} ions on the opposite side. The number of $\mathrm{H}_{2} \mathrm{O}$ molecules is equal to the number of O atoms deficit.
> In basic medium \rightarrow by adding OH^{-}
> To balance $\mathrm{O} \longrightarrow$ add $\mathrm{H}_{2} \mathrm{O}$ to side excess of O and same number of OH^{-} ions on the opposite side. The number of $\mathrm{H}_{2} \mathrm{O}$ molecules is equal to the number of O atoms deficit.
> To balance $\mathrm{H} \longrightarrow$ add $\mathrm{H}_{2} \mathrm{O}$ to side deficit of H and same number of OH ions on the opposite side. The number of $\mathrm{H}_{2} \mathrm{O}$ molecules is equal to the number of O atoms deficit.

Step-V: Balance charge by adding suitable number of electrons at suitable side.
Step-VI: Multiply both reactions by suitable number separately to make same number of electrons in both.
Step-VII: Add both half reactions due to which electrons will be cancelled out and balanced redox reaction is obtained.

Examples:

i) $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}$

Step-I:

$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$

$$
\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{CO}_{2}
$$

Step - II
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Step-III
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Step-IV
$8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Step - V
$5 \mathrm{e}^{-}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$

Step-VI

$\left(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right) \times 2$
$\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}\right) \times 5$

Step - VII

After adding above two reactions we get:

$$
2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

ii) $\mathrm{NO}_{3}^{-}+\mathrm{Br}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{NO}+\mathrm{Br}_{2}$
$\left.3 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}\right) \times 2$
$\left.2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}\right) \times 3$
After adding above two reactions we get
$\mathbf{2 N O} \mathbf{3}^{-}+\mathbf{6 B r}+\mathbf{8 H}{ }^{+} \boldsymbol{\rightarrow} \mathbf{2 N O}+\mathbf{3 B r} \mathbf{2}^{-} \mathbf{4} \mathrm{H}_{\mathbf{2}} \mathbf{O}$
iii) $\mathrm{Zn}+\mathrm{NO}_{3}^{-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{ZnO}_{2}{ }^{2-}+\mathrm{NH}_{3}$
$1 \times\left(4 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Zn} \rightarrow \mathrm{ZnO}_{2}{ }^{2-}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\right.$
$8 \mathrm{e}^{-}+9 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NH}_{3}+3 \mathrm{H}_{2} \mathrm{O}+9 \mathrm{OH}^{-}$
After adding above two reactions we get
$4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+7 \mathrm{OH}^{-} \rightarrow 4 \mathrm{ZnO}_{2}{ }^{2-}+\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
iv) $\mathrm{AsO}_{3}{ }^{3-}+\mathrm{NO}_{3}^{-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{AsO}_{4}{ }^{3-}+\mathrm{NO}_{2}$
$2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{3}{ }^{3-} \rightarrow \mathrm{AsO}_{4}{ }^{3-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
$2 \times\left(\mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}\right.$
After adding above two reactions we get
$\mathrm{AsO}_{3}{ }^{\mathbf{3 -}}+2 \mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{AsO}_{4}{ }^{\mathbf{3 -}}+\mathbf{2 N O}+2 \mathrm{NH}^{-}$
v) $\mathrm{BrO}_{4}^{-}+\mathrm{Br}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{BrO}_{3}^{-}$
$3 \mathrm{x}\left(2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{BrO}_{4}^{-} \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}\right.$
$1 \times\left(3 \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{-} \rightarrow \mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right.$
After adding above two reactions we get
$3 \mathrm{BrO}_{4}{ }^{-}+\mathrm{Br}^{-} \rightarrow \mathbf{4 \mathrm { BrO } _ { 3 }}{ }^{-}$
(vi) $\mathrm{Cl}_{2} \xrightarrow{\mathrm{OH}^{-}} \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$
$2 \mathrm{e}^{-}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}$
$12 \mathrm{OH}^{-}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{ClO}_{3}^{-}+12 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{e}^{-}$

After adding above two reactions we get
$6 \mathrm{Cl}_{2}+12 \mathrm{OH}^{-} \longrightarrow 10 \mathrm{Cl}^{-}+2 \mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
Note: If reaction is not given in ionic form then convert it (if possible) by removing all spectator ions.
$\left.\begin{array}{rlrl}\mathrm{KCl} & =\mathrm{K}^{+} & & +\mathrm{Cl}^{-} \\ \mathrm{H}_{2} \mathrm{SO}_{4} & =2 \mathrm{H}^{+} & & + \\ & =\mathrm{H}^{+} & & + \\ \mathrm{SO}_{4}^{-} \\ \mathrm{KMnO}_{4} & =\mathrm{K}^{+} & & + \\ \mathrm{MnO}_{4}^{-}\end{array}\right\}$

Example:

i) $\mathrm{KMnO}_{4}+\mathrm{KI}+\mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+\mathrm{I}_{2}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$

If all spectator ions are removed, we get
$\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{I}_{2}$
Balancing the equation
$2 \mathrm{MnO}_{4}^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
Final equation:

$$
2 \mathrm{KMnO}_{4}+10 \mathrm{KI}+16 \mathrm{HCl} \longrightarrow 2 \mathrm{MnCl}_{2}+5 \mathrm{I}_{2}+8 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{KCl}
$$

ii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{CO}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$ If all spectator ions are removed, we get
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Balancing,
$2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+6 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+28 \mathrm{H}^{+} \longrightarrow 4 \mathrm{Cr}^{3+}+12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
Final equation:
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\underset{8 \mathrm{~K}_{2} \mathrm{SO}_{4}}{14 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow} 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}+$

2. Oxidation number method:

This method is applicable for every redox reaction.
i) Select two species showing oxidation and reduction at reactant side by observing change in oxidation number.
ii) Calculate "Net increase or decrease in oxidation number for the two species".
iii) Make Total increase = Total decrease by multiplying species with suitable numbers.
iv) Now balance others by hit and trial.
v) Balance remaining O by $\mathrm{H}_{2} \mathrm{O}$.
vi) Balance remaining H by H^{+}or OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ (discussed in ion electron method).

Examples:

i) $\stackrel{+1+5-2}{\mathrm{H}} \mathrm{NO}_{3}+\stackrel{+4-2}{\mathrm{~S} \mathrm{O}_{2}} \longrightarrow \stackrel{+4-2}{\mathrm{~N} \mathrm{O}_{2}}+\stackrel{+1+6}{\mathrm{H}_{2}} \mathrm{~S}_{\mathrm{S}}^{\mathrm{H}} \mathrm{H}_{4}$

Step: $\stackrel{+5}{\mathrm{H}} \mathrm{O}_{3}+\stackrel{+4}{\mathrm{~S}} \mathrm{O}_{2} \longrightarrow \stackrel{+4}{\mathrm{~N}} \mathrm{O}_{2}+\mathrm{H}_{2} \stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}$
There is 1 decrease in N and 2 increase in S.

$$
2 \mathrm{HNO}_{3}+\mathbf{1 S O} \longrightarrow \mathbf{2} \mathbf{N O}_{2}+\mathbf{1 H}_{2} \mathbf{S O}_{4}
$$

ii) $\stackrel{+2}{\mathrm{NO}}+\stackrel{0}{\mathrm{Br}_{2}} \longrightarrow \mathrm{H}^{+5} \mathrm{O}_{3}+\mathrm{HBr}^{-1}$

There is 3 increase in N and 2 decrease in Br_{2}. So,
$2 \mathrm{NO}+3 \mathrm{Br}_{2}+\mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } \longrightarrow 2 \mathrm { HNO } _ { 3 } + \mathbf { 6 H B r }}$
iii)
$\mathrm{Na}_{2} \stackrel{+2}{\mathrm{~S}_{2} \mathrm{O}_{3}}+\quad \stackrel{0}{\mathrm{I}_{2}} \longrightarrow \mathrm{Na}_{2} \stackrel{+2.5}{\mathrm{~S}_{4}} \mathrm{O}_{6}+\mathrm{Na}$
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{1}_{2} \longrightarrow 1 \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
iv) $\stackrel{+6}{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-}+\quad \stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}^{2-} \longrightarrow \stackrel{+3}{\mathrm{Cr}^{3+}}+\stackrel{+4}{\mathrm{CO}_{2}}$

There is 6 decrease in Cr and 2 increase in C .
$\mathbf{1 C _ { 2 } \mathbf { O } _ { 7 } ^ { 2 - } + \mathbf { 3 C } \mathbf { C } _ { 2 } ^ { 2 - } + \mathbf { 1 4 H } \mathbf { H } ^ { + } \longrightarrow \mathbf { 2 C r }}{ }^{\mathbf{3 +}}+\mathbf{6} \mathbf{C O}_{2}+\mathbf{7} \mathrm{H}_{2} \mathbf{O}$

Practice questions

$1 \mathrm{CrO}_{4}{ }^{2-}+\mathbf{3 I ^ { - }} \mathbf{+} \mathbf{8} \mathrm{H}^{+} \longrightarrow \mathbf{C r}{ }^{\mathbf{3 +}}+\mathbf{3 / 2} \mathrm{I}_{\mathbf{2}}+\mathbf{4} \mathrm{H}_{\mathbf{2}} \mathbf{O}$
vi) $\stackrel{+3}{\mathrm{~A}} \mathrm{O}_{3}^{3-}+\stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}^{-} \xrightarrow{\mathrm{OH}^{-}} \stackrel{+5}{\mathrm{AsO}_{4}^{3-}}+\stackrel{+4}{\mathrm{NO}_{2}}$
$1 \mathrm{AsO}_{3}{ }^{3-}+2 \mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{AsO}_{4}{ }^{3-}+2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-}$
vii) $\mathrm{FeS}_{2}^{+2}+\mathrm{O}_{2}^{-1} \longrightarrow{ }^{+3} \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$

$$
2 \mathrm{FeS}_{2}+11 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}
$$

$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{OH}_{3} \mathrm{AsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}$
ix)
$\mathrm{Cl}_{2} \xrightarrow{\mathrm{OH}^{-}} \stackrel{(-1)}{\mathrm{Cl}^{-}}+\stackrel{+5}{\mathrm{ClO}_{3}^{-}}$
$3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \longrightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
x) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \stackrel{+3}{\mathrm{C}}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \stackrel{+2}{\mathrm{M}} \mathrm{MnSO}_{4}+\stackrel{+4}{\mathrm{CO}_{2}}+\mathrm{K}_{2} \mathrm{SO}_{4}$

xi) $\quad \mathrm{K}_{2} \mathrm{CrO}_{7}+\stackrel{+2}{\mathrm{Fe}}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{HNO}_{3} \longrightarrow \stackrel{+3}{\mathrm{C}} \mathrm{r}\left(\mathrm{NO}_{3}\right)_{3}+\stackrel{+3}{\mathrm{Fe}}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathbf{6 F e}\left(\mathrm{NO}_{3}\right)_{2}+14 \mathrm{HNO}_{3} \longrightarrow \mathbf{2 C r}\left(\mathrm{NO}_{3}\right)_{3}+6 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+2 \mathrm{KNO}_{3}+\mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }}$
xii) $\mathrm{KMnO}_{4}+\mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}+\mathrm{KCl}$ oxidation no. is not All HCl is not converting into Cl_{2}.
$\mathrm{KMnO}_{4}+\mathbf{8 H C l} \longrightarrow 1 \mathrm{MnCl}_{2}+5 / 2 \mathrm{Cl}_{2}+\mathrm{KCl}+4 \mathrm{H}_{2} \mathrm{O}$
xiii) $\stackrel{0}{\mathrm{Cu}}+\stackrel{+5}{\mathrm{H}} \mathrm{O}_{3} \longrightarrow \stackrel{+2}{\mathrm{C}} \mathrm{Cu}\left(\stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}\right)_{2}+\stackrel{+4}{\mathrm{NO}} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Q1 Consider the following reaction $\mathrm{MnO}_{4}^{-}+\mathrm{yC}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{z} \mathrm{H}^{+} \rightarrow \mathrm{xMnO}^{2+}+2 \mathrm{yCO}_{2}+$ $\frac{\mathrm{z}}{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$
The value of x, y and z in the reaction are, respectively
(A) 2,5 and 8
(B) 2,5 and 16
(C) 5,2 and 8
(D) 5, 2 and 16

A1 (B)

Balanced chemical reaction:

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

The values of x, y and z are 2,5 and 16 respectively.
For the reaction:
$\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$
The true statement(s) in the balanced equation is/are:
(A) Stoichiometric coefficient of $\mathrm{HSO}_{4}{ }^{-}$is 6
(B) Iodide is oxidized
(C) Sulphur is reduced
(D) $\mathrm{H}_{2} \mathrm{O}$ is one of the products

```

A2 (A), (B) \& (D)
The balanced equation is:
\(\mathrm{ClO}_{3}^{-}+6 \mathrm{I}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 3 \mathrm{I}_{2}+\mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}\)
So, stoichiometric coefficient of \(\mathrm{HSO}_{4}{ }^{-}\)is 6 .

\section*{Equivalent Concept (Gram equivalent concept)}

\section*{Gram equivalent mass}

It is the mass of one gram - equivalent of the substance in grams.
For a substance
\[
\text { Equivalent mass }=\frac{\text { Molar mass }}{n-\text { factor }}
\]

\section*{Number of gm - equivalent}
- Equivalents is similar property as moles but its value of not fixed.
i.e. 1 mole \(=N_{A}\) particles
\[
\text { But, } 1 \text { equivalent }=\left\{\begin{array}{l}
N_{A} \text { particles } \\
2 N_{A} \text { particle } \\
\text { or } \\
N_{A} / 3 \text { particles etc. }
\end{array}\right\} \text { All are possible }
\]
- For a substance, equivalent mass and in grams is equal to the mass of one equivalent. So for a substance:
\[
\begin{aligned}
\text { Number of equivalent } & =\frac{\text { Mass of substance }(\mathrm{g})}{\text { Equivalent mass }}=\frac{\text { Mass }}{\text { Molar Mass }} \times \mathrm{n}-\text { Factor } \\
& =\text { Moles } \times \mathrm{n} \text {-factor }
\end{aligned}
\]

\section*{Normality(N)}
- It is a concentration terms means is defined for solutions
- It is defined as the number of equivalent of solute present in 1 litre of solution.
\[
\text { Normality }=\frac{\text { Equivalent of solute }}{\text { Volume of solution }(\mathrm{L})}
\]

Unit \(\longrightarrow\) equivalent/L or Normal
\(N=\left(\frac{\text { Moles of solute }}{V_{\text {sol }}}\right) \times n-\) Factor


\section*{Calculation of \(\mathbf{n}\)-factor}
- n-factor is the property of a substance which have a positive value only.
\[
\begin{aligned}
\text { n }- \text { Factor } & \neq 0 \\
& \neq \text { negative }
\end{aligned}
\]

Case -I: When no reaction is provided
i) For atom
n - factor \(=\) General valency
e.g.
\begin{tabular}{|c|c|}
\hline Atom & n-factor \\
\hline Na & 1 \\
\hline Al & 3 \\
\hline Fe & 2 \\
\hline B & 3 \\
\hline C & 4 \\
\hline
\end{tabular}
etc.
- For ions:
[n-factor \(=\mid\) magnitude of charge on ion]
e.g. \(\mathrm{H}^{+}=1\)
\(\mathrm{Ba}^{2+}=2\)
\(\mathrm{OH}^{-}=1\)
\(\mathrm{CO}_{3}{ }^{2-}=2\)
\(\mathrm{PO}_{4}{ }^{3-}=3 \quad\) etc.
- For acids:
n - factor \(=\) Maximum basicity
Basicity = number of replacable \(\mathrm{H}^{+}\)per molecule of acid.
\(\left.\begin{array}{l}\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HCN}, \\ \text { e.g. } \\ \mathrm{HCOOH}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{3} \mathrm{PO}_{2}, \\ \mathrm{H}_{3} \mathrm{BO}_{3} \text { etc. }\end{array}\right\} n\)-factor \(=1\)
\(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}\) etc. \(\}\) n-factor \(=2\)
\(\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{AsO}_{4}\) etc. \(\}\) n-factor \(=3\)
- For bases:
n - factor \(=\) Maximum acidity
\[
\begin{aligned}
& \text { Acidity } \left.=\begin{array}{c}
\text { No. of replacable } \mathrm{OH}^{-} \\
\text {No. of acceptable } \mathrm{H}^{+}
\end{array}\right\} \text {per molecule of base } \\
& \text { e.g. } \left.\mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{NH}_{3}, \mathrm{RNH}_{2} \text { etc. }\right\}=1 \\
& \left.\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Zn}(\mathrm{OH})_{2}=\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2} \text { etc. }\right\}=2
\end{aligned}
\]
- For salt:
n - factor = Total charge on cation or Total charge on anions
\begin{tabular}{|l|l|l|}
\hline Salt & lons & n-factor \\
\hline NaCl & \(1 \mathrm{Na}^{+}\)and \(1 \mathrm{Cl}^{-}\) & 1 \\
\hline \(\mathrm{~K}_{2} \mathrm{SO}_{4}\) & \(2 \mathrm{~K}^{+}\)and \(1 \mathrm{SO}_{4}^{2-}\) & 2 \\
\hline \(\mathrm{MgBr}_{2}\) & \(1 \mathrm{Mg}^{2+}\) and \(2 \mathrm{Br}^{-}\) & 2 \\
\hline \(\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) & \begin{tabular}{l}
\(3 \mathrm{Ba}^{2+}\) and \\
\(2 \mathrm{PO}_{4}^{3-}\)
\end{tabular} & 6 \\
\hline
\end{tabular}

\section*{Illustration:}

Determine n -factor of \(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathbf{2 4 \mathrm { H } _ { 2 } \mathrm { O }}\)

A1
\[
\begin{array}{ll}
\text { From cation }: \mathrm{SK}^{+}+2 \mathrm{Al}^{+3} & \text { From anion }: 1 \mathrm{SO}_{4}^{2-}+3 \mathrm{SO}_{4}^{2-} \\
\mathrm{n}-\text { factor }=2 \times 1+2 \times 3=8 & \mathrm{n}-\text { factor }=4 \times 2=8
\end{array}
\]

Calculate no. of gram equivalents in following:
i) \(54 \mathrm{gm} \mathrm{Al}^{3+}\)
ii) \(98 \mathrm{gm} \mathrm{H}_{3} \mathrm{PO}_{4}\)
iii) 2 mole \(\mathrm{CO}_{3}{ }^{2-}\)
iv) 1.5 g molecule \(\mathrm{Ba}(\mathrm{OH})_{2}\)
v) \(12.04 \times 10^{22}\) ions of \(\mathrm{SO}_{4}^{2-}\)

A2 Using No. of equivalent \(=\frac{\text { Mass }}{\text { Molar mass }} \times n-\) facto
i) 54 gm Al
\[
\text { Equivalent }=\frac{54}{27} \times 3=6
\]
ii) \(98 \mathrm{mg} \mathrm{H}_{3} \mathrm{PO}_{4} \frac{98}{98} \times 3=3\)
iii) 2 mole \(\mathrm{CO}_{3}{ }^{2-}=2 \times 2=4\)
iv) 1.5 g molecule \(\mathrm{Ba}(\mathrm{OH})_{2}=1.5 \times 2=3\)
v) \(12.04 \times 10^{22}\) ions of \(\mathrm{SO}_{4}^{2-}=\left(\frac{12.04 \times 10^{22}}{\mathrm{~N}_{\mathrm{A}}}\right) \times 2=0.4\)
\[
\text { Normality }=\frac{\text { Equivalent of solute }}{\text { Volume of soution }(\mathrm{L})}=\frac{0.5}{500 / 1000}=1 \mathrm{~N}
\]

Calculate normality of solution prepared by mixing \(24.5 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}\) in its 500 ml solution.

A3 Given 24.5 gm of \(\mathrm{H}_{2} \mathrm{SO}_{4}\)
Molarity, \(M=\frac{\frac{24.5}{98}}{\frac{500}{1000}}=0.5\)
Normality \(=\) Molarity \(\times n\)-factor \(=0.5 \times 2=1 \mathrm{~N}\)
or, No. of equivalents \(=\frac{\text { Mass }}{\text { Molar mass }} \times n-\) factor \(=\frac{24.5}{98} \times 2=0.5\)

\section*{n-factor (Valency Factor)}

\section*{n-factor in non-redox reaction}
n-factor \(=\mid\) Charge \(\mid\) Exchanged per molecule
Or
It is the magnitude of charge per molecule


\(\underset{\text { n-factor }}{\substack{\mathrm{Na}_{2} \mathrm{CO}_{3} \\(2)}}+\underset{\substack{\text { (1) }}}{\mathrm{HCl}} \mathrm{H}_{2} \mathrm{CO}_{3} \quad+\underset{(2)}{\mathrm{NaCl}}\)
\(\underset{\text { n-factor }}{\substack{\mathrm{Na}_{2} \mathrm{CO}_{3} \\(1)}}+\underset{\text { (1) }}{\mathrm{HCl}} \longrightarrow \mathrm{NaHCO}_{3} \quad+\underset{\text { (1) }}{\mathrm{NaCl}}\)


n-factor (2)
(1)
(2)
\(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}\)
n-factor (1)
(1)
(1)
(1)
\[
\begin{aligned}
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} & \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
\text { n-factor }(2) & (2) \\
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaOH} & \\
\text { n-factor (1) } & \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]

\section*{n-factor in redox reaction}

For a substance present in a redox reaction, the "net increase or decrease in oxidation number per molecule" is known as n-factor of that substance in that reaction.
So, in a balanced redox reaction:
\[
(\mathbf{n}-\text { factor })_{\text {substance }}=\frac{\text { Total increase or decrease in the reaction }}{\text { Stoichiometric coefficient of substance }}
\]

\section*{Example:}
\begin{tabular}{|c|c|c|c|}
\hline n-factor & \[
\underset{(1)}{\stackrel{+5}{\mathrm{HNO}_{3}}+\stackrel{+4}{\mathrm{SO}_{2}}-\underset{(2)}{(1)}}
\] & \begin{tabular}{l}
\[
\xrightarrow[+4]{\mathrm{NO}_{2}} \quad+
\] \\
(1)
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{H}_{2}{ }^{+6} \mathrm{SO}_{4}
\] \\
(2)
\end{tabular} \\
\hline n-factor &  & \[
\rightarrow \underset{(3)}{+5}{\stackrel{+5}{\mathrm{HIO}_{3}}}_{+}
\] & \begin{tabular}{l}
\(\mathrm{HBr}^{-1}\) \\
(1)
\end{tabular} \\
\hline n-factor & \begin{tabular}{l}
\[
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\stackrel{0}{\mathrm{I}_{2}}-
\] \\
(1)
\end{tabular} & \begin{tabular}{l}
\[
\begin{equation*}
\rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \quad+ \tag{2}
\end{equation*}
\] \\
(2)
\end{tabular} & \begin{tabular}{l}
-1 \\
NaI \\
(1)
\end{tabular} \\
\hline n-factor & \[
\begin{gathered}
\stackrel{+6}{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-}+\stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}^{2-} \\
(6) \quad(2)
\end{gathered}
\] & \begin{tabular}{l}
\[
\longrightarrow \mathrm{Cr}^{+3}
\] \\
(3)
\end{tabular} & + \\
\hline n-factor & \[
\begin{gather*}
\stackrel{+6}{\mathrm{CrO}_{4}^{2-}}+{ }^{-1} \stackrel{1}{-1}_{(3)}(1)
\end{gather*}
\] & \begin{tabular}{l}
\[
\longrightarrow \mathrm{Cr}^{+3+}
\] \\
(3)
\end{tabular} & + \\
\hline n-factor & \begin{tabular}{l}
\[
\stackrel{+3}{\mathrm{AsO}_{3}^{3-}}+\stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}^{-}-
\] \\
(2) \\
(1)
\end{tabular} &  & \begin{tabular}{l}
\(+4\) \\
NO \\
(1)
\end{tabular} \\
\hline
\end{tabular}
n-factor for disproportionation
\[
(n-\text { factor })_{\text {disproportion }}=\frac{x y}{x+y}
\]
where \(x \longrightarrow n\)-factor for alone oxidation
\[
\mathrm{y} \longrightarrow \mathrm{n} \text {-factor for alone reduction }
\]
e.g.


\[
(\mathrm{n}-\text { factor })_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{2 \times 2}{2+2}=1
\]
\[
\mathrm{Cl}_{2} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}
\]
\[
(\mathrm{n}-\text { factor })_{\mathrm{Cl}_{2}}=\frac{2 \times 10}{2+10}=\frac{5}{3}
\]
\[
\begin{aligned}
& \begin{array}{cccc}
2 \mathrm{KMnO}_{4} & +5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} & +3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \\
\downarrow & \downarrow & 2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2} & +\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O} \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array} \\
& \text { n-factor }\left(\frac{10}{2}\right) \quad\left(\frac{10}{5}\right) \quad\left(\frac{10}{3}\right) \quad\left(\frac{10}{2}\right) \quad\left(\frac{10}{10}\right) \quad\left(\frac{10}{1}\right) \quad\left(\frac{10}{8}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{n} \text {-factor }\left(\frac{2}{1}\right) \quad\left(\frac{2}{2}\right) \quad\left(\frac{2}{2}\right) \quad\left(\frac{2}{1}\right)\left(\frac{2}{2}\right)\left(\frac{2}{1}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{n} \text {-factor }\left(\frac{5}{1}\right) \quad\left(\frac{5}{8}\right) \quad\left(\frac{5}{1}\right) \quad\left(\frac{5}{5 / 2}\right)\left(\frac{5}{1}\right)\left(\frac{5}{4}\right) \\
& \underset{\downarrow}{\mathrm{Cu}}+\underset{\downarrow}{4 \mathrm{HNO}_{3}} \longrightarrow \underset{\downarrow}{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}+\underset{\downarrow}{2 \mathrm{NO}_{2}}+\underset{\downarrow}{2 \mathrm{H}_{2} \mathrm{O}} \\
& \text { n-factor }\left(\frac{2}{1}\right) \quad\left(\frac{2}{4}\right) \quad\left(\frac{2}{1}\right) \quad\left(\frac{2}{2}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \underset{\text { Reduction }}{\mathrm{KMnO}_{4}}+\underset{\text { Oxidation }}{\mathrm{MnSO}_{4}} \longrightarrow \underset{\text { Disproportion }}{\mathrm{MnO}_{2}} \\
& (\mathrm{n}-\text { factor })_{\mathrm{Mn}_{2} \mathrm{O}_{2}}=\frac{3 \times 2}{3+2}=\frac{6}{5}
\end{aligned}
\]

Note: \(A_{x} B_{y} \rightarrow\) Product
\[
\text { n-Factor } \neq 0
\]
\[
\neq(-\mathrm{ve})
\]
e.g. \(\mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+\mathrm{H}_{2}\)
\[
\begin{aligned}
(\mathrm{n}-\text { Factor })_{\mathrm{NH}_{3}} & \neq 0 \\
& =3
\end{aligned}
\]
\(\therefore 2 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}\) \(\left(\frac{6}{2}\right) \quad\left(\frac{6}{1}\right)\left(\frac{6}{3}\right)\)
\(\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{P}_{4} \longrightarrow \mathrm{PH}_{3}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\)
\(N\)-factor \(-\frac{12 \times 4}{12+4}=\frac{48}{16}=\) (3)

\section*{Some commonly used agents}

\section*{i) Permanganate ion \(\left(\mathbf{M n O}_{\mathbf{4}}^{-}\right)\)}

Since (+7) is maximum oxidation numbers for Mn so in redox reactions, \(\mathrm{MnO}_{4}^{-}\)always acts as an oxidizing agent.
The product depends upon the medium of reaction as following:


\section*{ii) Dichromate ion ( \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\) )}

It also acts as an oxidizing agent but only in acidic medium.
\[
\begin{aligned}
& \stackrel{+6}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \xrightarrow{\mathrm{H}^{+}} 2 \mathrm{Cr}^{3+}} \quad \mathrm{n}-\text { factor } \mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}=\frac{6}{1} \text { and } \mathrm{Cr}^{3+}=\frac{6}{2} \\
& \\
& \text { Other medium } \\
& \text { Non - redox }
\end{aligned}
\]

\section*{iii) Oxalate ion ( \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) )}

In redox reactions, it always acts as reducing agent.
\[
\begin{aligned}
& \stackrel{+3}{\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \xrightarrow[\text { any medium }]{\text { redo }} \stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}} \\
& \Rightarrow \quad(\mathrm{n}-\text { factor })_{\mathrm{C}_{2} \mathrm{O}_{4}^{2-}}=2
\end{aligned}
\]
iv) \(\mathrm{H}_{2} \mathrm{O}_{2}\)

With other reagent, will act as oxidizing and reducing agent

v) Mohr's salt(Ferrous Ammonium sulphate
\(\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Redox }} \mathrm{Fe}^{3+}\) only
\(\Rightarrow\) ( n -factor) \()_{\text {Mohr's salt }}=1\)

\section*{Law of equivalence}

In a chemical reaction, all reactants react in equal number of equivalents and produce same number of equivalents of each product.
i.e.

For \(\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}\)
If 'a' mole

i.e. A:B:C:D by moles = a:b:c:d

But

\(\Rightarrow A: B: C: D\) by equivalent \(=1: 1: 1: 1\)
e.g.
\begin{tabular}{lllll} 
& \(\mathrm{H}_{2} \mathrm{SO}_{4}+\) & \(2 \mathrm{NaOH} \longrightarrow\) & \(\mathrm{Na}_{2} \mathrm{SO}_{4}+\) & \(2 \mathrm{H}_{2} \mathrm{O}\) \\
& 1 mole & 2 mole & 1 mole & 2 mole \\
n-factor & (2) & \((1)\) & (2) & (1) \\
equivalent & 2 & 2 & 2 & 2
\end{tabular}

Note: So, for a particular reaction,
\[
(\text { Equivalent })_{\text {given }}=(\text { Equivalent })_{\text {required }}
\]
where,
\[
\text { Equivalent }=\left\{\begin{array}{l}
\frac{\text { Mass }}{\text { Equivalent mass }} \\
\frac{\text { Mass }}{\text { Molar mass } \times n-\text { factor }} \\
\text { Mole } \times \mathrm{n}-\text { factor } \\
\mathrm{M} \times \mathrm{V} \times \mathrm{n}-\text { factor } \\
\mathrm{N} \times \mathrm{V}
\end{array}\right.
\]

\section*{Illustration:}

Q1
To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorous acid \(\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)\), the volume of 0.1 M aqueous KOH solution required as:
(A) 10 ml
(B) 20 ml
(C) 40 ml
(D) 60 ml

Q1 (C)
Given:
\(\mathrm{H}_{3} \mathrm{PO}_{3}+2 \mathrm{KOH} \longrightarrow \mathrm{K}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}\)
Volume of 0.1 M aqueous solution of phosphoric acid \(=20 \mathrm{ml}\)
We know from law of equivalence:
(Equivalent) \()_{\mathrm{H}_{3} \mathrm{PO}_{3}}=(\text { Equivalent })_{\mathrm{KOH}}\)
\(M_{1} \times V_{1} \times n\)-factor \(=M_{2} \times V_{2} \times\) n-factor
\(0.1 \times 20 \times 2=0.1 \times(V)_{\text {кон }} \times 1\)
\(\Rightarrow \quad 4=(\mathrm{V})_{\text {кон }} \times 0.1\)
\(\Rightarrow \quad \mathrm{V}_{\text {кон }}=40 \mathrm{ml}\)

The number of moles of \(\mathrm{KMnO}_{4}\) that will be needed to react with one mole of sulphite ions in acidic solution is:
(A) \(2 / 5\)
(B) \(3 / 5\)
(C) \(4 / 5\)
(D) 1

A2 A
\(2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{SO}_{3}{ }^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O}\)
We know from law of equivalence:
\[
\begin{aligned}
& (\text { Equivalent })_{\mathrm{KMnO}_{4}}=(\text { Equivalent })_{\mathrm{SO}_{3}^{-2}} \\
& (\text { Mole } \times \mathrm{n}-\text { factor })_{\mathrm{KMnO}_{4}}=(\text { Mole } \times \mathrm{n} \text {-factor })_{\mathrm{SO}_{3}^{-2}} \\
& \mathrm{n} \times 5=1 \times 2 \\
& \mathrm{n}=2 / 5 \text { moles }
\end{aligned}
\]

The mass of potassium dichromate crystals required to oxides \(750 \mathrm{~cm}^{3}\) of 0.6 M Mohr's salt solution is:
(Given molar mass: potassium dichromate \(=294 \mathrm{~g} / \mathrm{mol}\), Mohr's salt \(=392 \mathrm{~g} / \mathrm{mol}\) )
(A) 22.05 g
(B) 2.2 g
(C) 0.49 g
(D) 0.45 g

A3 (A)
\(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+7 \mathrm{H}_{2} \mathrm{O}\)
We know from law of equivalance:
(Equivalent \()_{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \quad=(\text { Equivalent })_{\text {Mohr's salt }}\)
\[
\begin{aligned}
\left(\frac{\text { Mole }}{\text { Molar mass }} \times \mathrm{n}-\text { factor }\right) & =(\mathrm{M} \times \mathrm{V} \times \mathrm{n}-\text { factor })_{\text {Mohr's salt }} \\
\frac{\mathrm{w}}{294} \times 6 & =0.6 \times \frac{750}{1000} \times 1 \\
\mathrm{w} & =0.6 \times \frac{75}{100} \times \frac{294}{6}=22.05 \mathrm{gm}
\end{aligned}
\]

What weight of \(\mathrm{HNO}_{3}\) is needed to convert 62 gm of \(\mathrm{P}_{4}\) to \(\mathrm{H}_{3} \mathrm{PO}_{4}\) in the reaction? \(\mathrm{P}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}\)
(A) 63 gm
(B) 630 gm
(C) 315 gm
(D) 126 gm

A4 (B)
The balance chemical reaction:
\(\mathrm{P}_{4}+2 \mathrm{HNO}_{3} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}\)
Molar mass of \(P_{4}=9 / \mathrm{mol}\)
Molar mass of \(\mathrm{HNO}_{3}=639 / \mathrm{mol}\)
We know from law of equivalence:
\((\text { Equivalent })_{\mathrm{P}_{4}}=(\text { Equivalent })_{\mathrm{HNO}_{3}}\)
\(\left(\frac{\text { Mass }}{\text { Molar mass }} \times n-\text { Factor }\right)_{\mathrm{P}_{4}}=\left(\frac{\text { Mass }}{\text { Molar mass }} \times \mathrm{n}-\text { Factor }\right)_{\mathrm{HNO}_{3}}\)
\[
\Rightarrow \quad \frac{62}{124} \times 20=\frac{w}{63} \times 1
\]
\[
\Rightarrow \quad \mathrm{w}=\frac{62}{124} \times 20 \times 63=630 \mathrm{gm}
\]

\section*{Titration ( \(\mathbf{A}_{\text {(aq) }}\) vs \(\left.\mathbf{B}_{(\text {aq) }}\right)\)}

Aim: Determination of the concentration of solution present in conical flask by titration with standard solution from burette.


\section*{B (aq). known : Standard Solution}

At equivalence point \((\text { Eq. })_{A}=(\text { Eq. })_{B}\)

\section*{Illustration:}

It requires 40 ml of \(1 \mathrm{M} \mathrm{Ce}^{4+}\) to titrate 20 ml of \(1 \mathrm{M} \mathrm{Sn}^{2+}\) to \(\mathrm{Sn}^{4+}\). What is the oxidation state of the Cerium in the product?
\(A 1 \mathrm{Ce}^{4+}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+\mathrm{Ce}^{\mathrm{n+}}\)
\((\text { Milli Equivalent })_{\mathrm{Ce}^{4+}}=(\text { Milli Equivalent })_{\mathrm{Sn}^{2+}}\)
\((\mathrm{M} \times \mathrm{V} \times \mathrm{n}-\text { factor })_{\mathrm{Ce}^{4+}}=(\mathrm{M} \times \mathrm{V} \times \mathrm{n}-\text { factor })_{\mathrm{Sn}^{2+}}\)
\(1 \times 40 \times(4-n)=1 \times 20 \times 2\)
\(40 \times(4-n)=40\)
\(4-n=1\)
\(\mathrm{n}=4-1\)
\(\mathrm{n}=3\)
6.7 gm sample of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) is titrated with \(40 \mathrm{ml}, 0.02 \mathrm{M} \mathrm{KMnO}_{4}\) solution in acidic medium. Calculate \% purity of original sample.

(Equivalent) \()_{\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}=(\text { Equivalent })_{\mathrm{KMnO}_{4}}\)
\[
\begin{aligned}
\frac{x}{134} \times 2=(0.02 & \left.\times \frac{40}{1000} \times 5\right) \\
\frac{x}{67} & =0.1 \times \frac{4}{100} \\
x & =0.1 \times \frac{4}{100} \times 67 \\
x & =\frac{26.8}{100} \\
x & =0.268
\end{aligned}
\]

Now, \% purity \(=\frac{0.268}{6.7} \times 100\)
\(\%\) purity \(=0.04 \times 100\)
\% purity \(=4\) \%

\section*{Q3}

An aqueous solution of \(\mathbf{H 2 O 2}\) is diluted 20 times. If 100 ml of this diluted solution requires \(200 \mathrm{ml}, 0.1 \mathrm{~N} \mathrm{~K} 2 \mathrm{Cr} 2 \mathrm{O} 7\) solution for complete titration in acidic medium, then calculate volume strength of the original H 2 O 2 solution.

A3 Molarity of original \(\mathrm{H}_{2} \mathrm{O}_{2}\) solution is " \(x\) " \(M\)
Molarity of diluted \(\mathrm{H}_{2} \mathrm{O}_{2}\) solution \(=\frac{\mathrm{X}}{20} \mathrm{M}\)
\(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{O}_{2}\)
\(\therefore\) Milli (Equivalent \()_{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}=(\text { Milli Equivalent })_{\mathrm{H}_{2} \mathrm{O}_{2}}\)
\[
0.1 \times 200=\frac{x}{20} \times 100 \times 2
\]
\[
x=2 M
\]
\(\therefore\) Volume strength \(=2 \times 11.2=22.4 \mathrm{~V}\)

\section*{Different Types of Titration}

\section*{Illustration:}
0.84 g iron ore containing ' \(x\) ' percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required ' \(x\) ' ml of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the normality of dichromatic solution.

A1 \(\mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}\)
(Equivalent) \()_{\mathrm{Fe}}=(\text { Equivalent })_{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}\) from law of equivalance
\(\frac{0.84 \times \frac{x}{100}}{56} \times 1=\frac{x \times N}{1000}\)
\(\Rightarrow \mathrm{N}=\frac{0.84 \times 100}{56 \times 100}=0.15 \mathrm{eq} / \mathrm{L}\)

An equimolar mixture of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) and \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) required \(\mathrm{V}_{1}\) litre of \(0.1 \mathrm{M} \mathrm{KMnO}_{4}\) in acidic medium for complete oxidation. The same amount of the mixture required \(\mathrm{V}_{2}\) litre of 0.2 M NaOH for neutralization. The ratio of \(\mathrm{V}_{1}\) to \(\mathrm{V}_{2}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)\) is:
(A) \(2: 5\)
(B) \(1: 2\)
(C) \(4: 5\)
(D) None of these

\section*{A2 (A)}

Case-I: Equimolar mixture of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) and \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) required \(\mathrm{V}_{1} \mathrm{~L}\) of \(0.1 \mathrm{M} \mathrm{KMnO}_{4}\) in acidic medium.

As the mixture is equimolar, 1 mole of each are present.
\(\therefore \quad\) Eq. of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\) Eq. of \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\mathrm{Eq}\). of \(\mathrm{KMnO}_{4}\)
\(1 \times 2+1 \times 2=0.1 \times \vee_{1} \times 5\)
\((\therefore\) equivalent \(=\) mole \(\times\) valence factor \()\)
\(V_{1}=\frac{4}{0.5}\)
\(V_{1}=8 L\)
Case - II: Equimolar mixture of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) and \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) required \(\mathrm{V}_{2} \mathrm{~L}\) of 0.2 M NaOH for neutralization.
\[
\begin{aligned}
(\text { Equivalent })_{\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}+(\text { Equivalent })_{\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}} & =(\text { Equivalent })_{\mathrm{NaOH}} \\
1 \times 2+1 \times 2 & =\mathrm{V}_{2} \times 0.2 \times 1 \\
2+2 & =\mathrm{V}_{2} \times 0.2 \\
\mathrm{~V}_{2} & =20 \mathrm{~L} \\
\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} & =\frac{8}{20}=2: 5
\end{aligned}
\]

\section*{Iodimetric Titration:}
- It is used to determine strength of a reducing agent by direct titration of it with standard solution of \(\mathrm{I}_{2}\)
i.e.


\section*{Iodometric Titration:}
- It is used to determine strength of an oxidizing agent
- It is a two-step process as following:

\section*{Step-I:}

Oxidising agent \(+\underset{\text { (excess) }}{I^{-} \text {(aq.) }} \longrightarrow\) Product \(+\mathrm{I}_{2}\)

\section*{Step-II:}
\[
\begin{equation*}
\underset{\text { (evolved) }}{\mathrm{I}_{2}}+\underset{\substack{\text { Sodium thiosulphate } \\ \text { (Hypo) }}}{2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI} \tag{1}
\end{equation*}
\]
\(\left[(\text { Equivalent })_{0 . A}\right]=\left[(\text { Equivalent })_{1_{2}}\right]_{1}\)
\(\left.\left.[\text { (Equivalent })_{1_{2}}\right]_{2}=[\text { (Equivalent })_{H y p o}\right]\)
\(\therefore\) Moles of \(\mathrm{I}_{2}\) in both reactions are same.
\[
\begin{array}{ll} 
& \left(\mathrm{n}-\text { factor }_{L_{2}}\right)_{1}=2 \\
& \left(\mathrm{n}-\text { factor }_{L_{2}}\right)_{2}=2 \\
\Rightarrow \quad & \left(\mathrm{Eq}_{\mathrm{l}_{2}}\right)_{1}=\left(E q_{l_{2}}\right)_{2} \\
\text { So, } & \\
& (\mathrm{Eq})_{\text {O.A }}=(\mathrm{Eq} \cdot)_{\text {hypo }}
\end{array}
\]

Also

\section*{Illustration:}

50 ml KMnO 4 solution is mixed with excess of KI solution in acidic medium. The liberated 12 requires 200 ml of 0.25 M Na2S2O3 solution for complete titration. Calculate molarity of KMnO4 solution.

\section*{A1 Given}
\(\mathrm{KMnO}_{4}+\mathrm{I}^{-} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{I}_{2}\)
\(\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaI}\)
Volume of \(\mathrm{KMnO}_{4}\) solution \(=50 \mathrm{ml}\)
Volume of \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) solution \(=200 \mathrm{ml}\)
\(\therefore(\text { Mill Equivalent })_{\mathrm{KMnO}_{4}}=(\text { Mill Equivalent })_{\mathrm{Na}_{2} \mathrm{~S}}\)
\[
M \times 50 \times 5=0.25 \times 200 \times 1
\]
\[
M=\frac{0.25 \times 200 \times 1}{50 \times 5}
\]

Molarity of \(\left[\mathrm{KMnO}_{4}\right]=0.2 \mathrm{M}\)
25 ml of household bleach solution was mixed with 30 ml of 0.50 M KI and 10 ml of 4 N acetic acid. In the titration of the liberated iodine, 48 ml of 0.25 N \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) was used to reach the end point. The molarity of the household bleach solution is:
(A) 0.48 M
(B) 0.96 M
(C) 0.24 M
(D) 0.024 M

\section*{C}
\(\mathrm{Cl}_{2}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+\mathrm{Cl}^{-}\)
\(\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaI}\)
( n -factor \()_{\mathrm{I}_{2}}\) is same in both steps
(Molarity) Bleach \(=\frac{\mathrm{x}}{\text { Volume }}=\frac{6}{25}=0.24 \mathrm{M}\)
Note:
\[
A \longrightarrow B
\]

All \(\mathrm{B} \longrightarrow \mathrm{C}\)
If \(n-F a c t o r\) of \(B\) in both are same
(Eq. \()_{A}=(\text { Eq. })_{C}\)
If \(n-F a c t o r\) of \(B\) are different
\((\text { Eq. })_{1} \neq\left(\text { Eq. }_{\text {в }}\right)_{2}\),
then apply mole method for solving

10 ml of \(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) solution is mixed with excess of \(\mathrm{KIO}_{3}\) solution. The evolved \(\mathrm{I}_{2}\) requires \(20 \mathrm{ml}, 0.5 \mathrm{M}\) hypo solution for complete titration.
Determine the molarity of \(\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) solution.
\(\mathrm{A} 3 \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{KIO}_{3} \longrightarrow \mathrm{I}_{2}+\mathrm{CO}_{2}\)
\(\mathrm{I}_{2}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}\)
(Milli Equivalent \()_{\mathrm{L}_{2}}=(\text { Milli Equivalent })_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}} \mid\) (Muilli Equivalent \()_{\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}=\) (Milli Equivalent \()_{\mathrm{l}_{2}}\)
\[
\begin{aligned}
\mathrm{n} \times 2 & =0.5 \times 20 \times 1 \\
\mathrm{n} & =\frac{10.0 \times 1}{2} \\
\mathrm{n} & =5 \mathrm{~m} . \text { mole }
\end{aligned}
\]
\[
M \times 10 \times 2=5 \times 10
\]
\[
M=\frac{50}{20}
\]
\[
\mathrm{M}=2.5 \mathrm{M}
\]

Q4 To measure the quantity of \(\mathrm{MnCl}_{2}\) dissolved in an aqueous solution, it was completely converted to \(\mathrm{KMnO}_{4}\) using reaction, \(\mathrm{MnCl}_{2}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}\) (Equation not balanced) Few drops of concentration HCl were added to this solution and gently warmed. Further oxalic acid ( 225 mg ) was added in portions till the colour of the permanganate ion disappeared.
The quantity of \(\mathrm{MnCl}_{2}\) (in mg ) present in the initial solution is \(\qquad\) -. (Atomic weight in \(\mathrm{g} \mathrm{mol}^{-1} ; \mathrm{Mn}=55, \mathrm{Cl}=35.5\) )
\(\mathrm{A} 4 \mathrm{MnCl}_{2} \longrightarrow \mathrm{MnO}_{4}^{-}\)
\(\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{CO}_{2}\)
\((\mathrm{n}-\text { Factor })_{\mathrm{MnO}_{4}^{-}} \longrightarrow\) same in both reaction
\[
\begin{aligned}
(\text { Equivalent })_{\mathrm{C}_{2} \mathrm{O}_{4}^{2-}} & =(\text { Equivalent })_{\mathrm{MnO}_{4}^{-}} \\
2 \times \frac{0.225}{90} & =\text { moles } \times 5 \\
\Rightarrow \quad \text { moles }_{\mathrm{Mn}_{4}^{-}} & =0.001 \\
\text { (Equivalent })_{\mathrm{MnCl}_{2}} & =(\text { Equivalent })_{\mathrm{MnO}_{4}^{-}} \\
\text {Now, } \quad \frac{\mathrm{W}_{\mathrm{MnCl}_{2}}}{(55+71)} \times 5 & =0.001 \times 5 \\
\mathrm{~W}_{\mathrm{MnCl}_{2}} & =0.001 \times(55+71) \mathrm{gm} \\
\mathrm{~W}_{\mathrm{MnCl}_{2}} & =126 \mathrm{mg}
\end{aligned}
\]

Given quantity of \(\mathrm{MnCl}_{2}\) dissolved in an aqueous solution was completely converted to \(\mathrm{KMnO}_{4}\).
\(\therefore \quad\) Quantity of \(\mathrm{MnCl}_{2}\) present in the initial solution \(=126 \mathrm{mg}\)

\section*{Back Titration, Double Indicator Titration}

\section*{Back Titration:}
- A multistep process which can be used for both redox as well as non-redox reactions.

Step-I:
\[
\begin{aligned}
& \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{~B}) \\
& (\mathrm{Eq})_{\mathrm{A}}=\left(\mathrm{Eq}_{\mathrm{B}}\right)_{1}
\end{aligned}
\]

Step-II:
\(\mathrm{B}+\mathrm{C} \longrightarrow\) product
(remaining)
\(\left(E q_{B}\right)_{2}=(E q)_{C}\)
\(\left(\mathrm{n}_{\mathrm{B}}\right)_{1}+\left(\mathrm{n}_{\mathrm{B}}\right)_{2}=\) Initial moles of B (Given)
- If \(n\)-factor of \(B\) in both are same:
\[
(\mathrm{Eq} \cdot \mathrm{~B})_{\text {Total }}=(\mathrm{Eq} \cdot)_{\mathrm{A}}+(\mathrm{Eq} .)_{\mathrm{C}}
\]
- If \(n\)-factor of \(B\) in both are different:

First solve reaction in steps (2) and find \(\left(n_{B}\right)_{2}\).
Now, \(\left(n_{B}\right)_{1}=\left(n_{B}\right)_{\text {given }}-\left(n_{B}\right)_{2}\)
Now solve reaction in step (1) and find A.

\section*{Illustration:}

50 gm of a sample of \(\mathrm{Ca}(\mathrm{OH})_{2}\) is dissolved in 50 ml of 0.5 N HCl solution. The excess of HCl was titrated with 0.3 N NaOH . The volume of NaOH used was 20 cc. Calculate \% purity of \(\mathrm{Ca}(\mathrm{OH})_{2}\) sample.



Let ' \(x\) ' gm of \(\mathrm{Ca}(\mathrm{OH})_{2}\) present in sample n-factor of HCl is same in both.
So,
\[
\begin{aligned}
(\text { Eq. })_{\mathrm{HCl}} & =(\text { Eq. })_{\mathrm{Ca}(\mathrm{OH})_{2}}+(\text { Eq. })_{\mathrm{NaOH}} \\
0.5 \times \frac{50}{1000} & =\left(\frac{\mathrm{x}}{74} \times 2\right)+\left(0.3 \times \frac{20}{1000}\right) \\
\frac{25}{1000} & =\frac{\mathrm{x}}{37}+\frac{6}{1000} \\
\Rightarrow \quad \frac{25}{1000}-\frac{6}{1000} & =\frac{x}{37} \\
\frac{19}{1000} & =\frac{x}{37} \\
x & =\frac{19}{1000} \times 37 \\
x & =\frac{703}{1000}=0.703 \mathrm{~g}
\end{aligned}
\]

Now,
\(\%\) purity \(=\frac{\text { Mass of } \mathrm{Ca}(\mathrm{OH})_{2}}{\text { Mass of sample }} \times 100=\frac{0.703}{50} \times 100=1.406 \%\)
9.0 g of an ammonia solution is treated with \(50 \mathrm{ml} 0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}\) solution, 20 ml of 0.1 N NaOH is required for back titration. What is the percentage of ammonia in the solution?

A2 Let mass of pure \(\mathrm{NH}_{3}=x\) gm
\[
\begin{array}{rlrl}
(\text { Eq. })_{\mathrm{H}_{2} \mathrm{SO}_{4}} & \left.=(\text { Eq. })_{\mathrm{NH}_{3}}+\text { (Eq. }\right) \\
0.5 \times \frac{50}{1000} & =\left(\frac{x}{17} \times 1\right)+\left(0.1 \times \frac{20}{1000}\right) \\
\frac{25}{1000} & =\frac{x}{17}+\frac{2}{1000} \\
\Rightarrow \quad & \frac{25}{1000}-\frac{2}{1000} & =\frac{x}{17} \\
\Rightarrow \quad \frac{23}{1000} \times 17 & =x \\
\Rightarrow \quad x & =\frac{391}{1000}=0.391 \mathrm{gm} \\
\therefore \% \mathrm{NH}_{3} & =\frac{0.391}{9} \times 100=4.34 \%
\end{array}
\]

40 ml solution of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) is treated with \(100 \mathrm{ml}, 0.1 \mathrm{M} \mathrm{KMnO}_{4}\) in acidic medium, the excess of \(\mathrm{MnO}_{4}^{-}\)solution requires 10 ml of \(0.05 \mathbf{M ~ H}_{2} \mathrm{O}_{2}\) solution in basic medium for complete titration. Calculate molarity of \(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\).

A3
\[
\begin{equation*}
\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{MnO}_{4}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{CO}_{2} \tag{1}
\end{equation*}
\]

n-factor of \(\mathrm{MnO}_{4}^{-}\)is differed in both
For reaction 2,
\[
(\mathrm{m} . \text { eq. })_{\mathrm{MnO}_{4}^{-}}=(\mathrm{m} . \text { eq. })_{\mathrm{H}_{2} \mathrm{O}_{2}}
\]
m. moles \(\times 3=0.05 \times 10 \times 2\)
m. moles \(_{\mathrm{MnO}_{4}^{1}}=\frac{5 \times 10 \times 2}{100 \times 3}\)
m. moles \(_{\mathrm{MnO}_{4}^{1}}=\frac{1}{3}\)
m.moles of \(\left(\mathrm{MnO}_{4}^{-}\right)_{\text {Total }}=0.1 \times 100=10 \mathrm{~m}\). mole
m.moles of \(\mathrm{MnO}_{4}^{-}\)used in 1 reaction \(=10-\frac{1}{3}=\frac{29}{3} \mathrm{~m} . \mathrm{mole}\)

For reaction (1):
\[
\begin{aligned}
(\mathrm{m} . \text { eq. })_{\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}} & =(\mathrm{m} . \text { eq. })_{\mathrm{MnO}_{4}^{-}} \\
\mathrm{M} \times 40 \times 2 & =\frac{29}{3} \times 5 \\
M & =\frac{29}{3} \times \frac{5}{80}=\frac{145}{240}=\frac{29}{48} \mathrm{~mol} / \mathrm{L}
\end{aligned}
\]

\section*{Double Indicator Titration:}

The titration consisting two equivalence points which are detected by two different indicators.

- \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) (aq.) vs ( \(\mathrm{HCl}(\mathrm{aq}\).

i) When all \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) consume to give \(\mathrm{NaHCO}_{3}\),
\(\Rightarrow \quad\) 1st equivalence point is reached
Suitable indicator \(=\) Phenolphthalein
ii) Now on further addition of HCl
\(\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaCl}\) (Neutral)
When all \(\mathrm{NaHCO}_{3}\) consumed to give \(\mathrm{H}_{2} \mathrm{CO}_{3}\)
\(\Rightarrow \quad 2\) nd equivalence point is reached

\section*{Suitable indicator \(=\) Methyl orange}
- If alone phenolphthalein is used then only \(1^{\text {st }}\) equivalence point in detected.
- If alone methyl orange is used then only \(2^{\text {nd }}\) equivalence point is detected.
- To detect both equivalence point, initially phenolphthalein is mixed and after \(1^{\text {st }}\) equivalence point, Methyl orange should be mixed.

\section*{Illustration:}

Q1 In the mixture of \(\left(\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)\), volume of HCl required in ' \(x\) ' ml with phenolphthalein indicator and y ml with methyl orange later in the same titration. Hence volume of HCl for complete reaction of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) is:
(A) \(2 x\)
(B) \(y\)
(C) \(x / 2\)
(D) \((y-x)\)

A1 A


\section*{Phenolphthalein is added to detect \(1^{\text {st }}\) equivalence po}
\[
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}
\]
\[
(\mathrm{Eq})_{\mathrm{HCl}}=(\mathrm{Eq})_{\mathrm{Na}_{2} \mathrm{CO}_{3}}
\]
\[
N x^{\prime} x^{\prime}=b \times 1
\]

Now, methyl orange is added to detect \(2^{\text {nd }}\) equivalence point \(\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaCl}\)
\[
\begin{aligned}
&(\mathrm{m} . e q)_{\mathrm{HCl}}=(\mathrm{m} . \mathrm{eq})_{\mathrm{NaHCO}_{3}} \\
& \mathrm{~N} \times \mathrm{y}=(\mathrm{a}+\mathrm{b}) \times 1 \\
& \mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{HCl}} \mathrm{H}_{2} \mathrm{CO}_{3} \\
&(\mathrm{Eq})_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=(\mathrm{Eq})_{\mathrm{HCl}} \\
& \mathrm{~b} \times 2=\mathrm{N} \times \mathrm{V} \\
&(\mathrm{Nx}) \times 2=\mathrm{N} \times \mathrm{V} \\
& \mathrm{~V}=\frac{2 \mathrm{Nx}}{\mathrm{~N}} \\
& \mathrm{~V}=2 \mathrm{x}
\end{aligned}
\]
\(\therefore \quad\) volume of HCl for complete reaction is 2 x ml
0.1 g of a solution containing \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) and \(\mathrm{NaHCO}_{3}\) requires 10 ml of 0.01 N HCl for neutralization using phenolphthalein as an indicator. Weight percent of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in solution is
(A) 25
(B) 32
(C) 50
(D) None of these
\[
\begin{aligned}
& \text { A2 D } \\
& \text { (m.eq. })_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=(\mathrm{Eq})_{\mathrm{HCl}} \\
& \frac{x}{106} \times 1=0.01 \times \frac{10}{1000} \\
& \Rightarrow \quad \mathrm{x}=\frac{0.1}{1000} \times 106 \\
& \Rightarrow \quad x=106 \times 10^{-4} \mathrm{gm} \\
& \therefore \quad \text { Wt. \% of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{106 \times 10^{-4}}{0.1} \times 100=10.6 \%
\end{aligned}
\]

A mixture of NaOH and Na 2 CO 3 required 25 ml of 0.1 M HCl using phenolphthalein as the indicator. However, the same amount of the mixture required 30 ml of 0.1 M HCl when methyl orange was used as the indicator. The molar ratio of NaOH and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in the mixture was:

\section*{A3 4:1}

Let m .moles of \(\mathrm{NaOH}=\) ' \(x\) ' m.mole and m.moles of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=' y\) ' m. mole
Phenolphthalein is added to detect \(1^{\text {st }}\) equivalence point \(\left(\mathrm{NaHCO}_{3}\right)\)
First: All \(\mathrm{NaOH} \xrightarrow{\mathrm{HCl}} \mathrm{NaCl}\); Then \(\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\mathrm{HCl}} \mathrm{NaHCO}_{3}\)
\[
\begin{align*}
(\text { m.eq. })_{\mathrm{HCl}} & =(\text { m.eq. })_{\mathrm{NaOH}}+(\text { m.eq. })_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \\
0.1 \times 25 \times 1 \times 1 & =x(1)+\mathrm{y}(1) \\
\Rightarrow \quad x+y & =2.5 \text { m.mole } \tag{1}
\end{align*}
\]

Titration with methyl orange is added to detect \(2^{\text {nd }}\) equivalence point direct
\[
\begin{align*}
& \mathrm{NaOH} \xrightarrow{\mathrm{NaOL}} \mathrm{NaCl} \\
& \mathrm{NaCO}_{3} \xrightarrow[\mathrm{HCl}]{\mathrm{HCl}} \mathrm{H}_{2} \mathrm{CO}_{3} \\
& \quad(\text { m.eq. })_{\mathrm{HCl}}=(\text { m.eq. })_{\mathrm{NaOH}}+\quad(\mathrm{m} . \mathrm{eq})_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \\
& \begin{aligned}
0.1 \times 30 \times 1 & =x(1)+y(2)
\end{aligned} \\
& \qquad \quad x+2 y=3 \text { m.mole }  \tag{2}\\
& \Rightarrow \quad x=2 \text { m mole and } y=0.5 \mathrm{~m} . \text { mole, on solving (1) \& (2). } \\
& \Rightarrow \\
& \text { Ratio of mole of } \mathrm{NaOH} \& \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{2}{0.5}=4: 1
\end{align*}
\]

\section*{Illustration:}

100 ml solution of NaOH and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) was first titrated with \(\mathrm{N} / 10 \mathrm{HCl}\) in presence of HPh, \(17.5 \mathbf{~ m l}\) is required to end point. After this MeOH was added and \(2.5 \mathbf{~ m l}\) of same HCl is required. The amount of NaOH in mixture is
(A) 0.06 g per 100 ml
(B) 0.06 g per 200 ml
(C) 0.05 g per 100 ml
(D) 0.012 g per 200 ml

\section*{A}

Let ' \(x\) ' m mole of NaOH in 100 ml solution and ' \(y\) ' m.ole of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) in 100 ml solution.
\(\mathrm{HPh} \Rightarrow 1^{\text {st }}\) equivalence point \(\left(\mathrm{NaHCO}_{3}\right)\)
\[
\begin{align*}
\Rightarrow & (\text { m.eq. })_{\mathrm{HCl}} & =(\text { m.eq. })_{\mathrm{NaOH}}+\quad(\text { m.eq. })_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \\
\Rightarrow & \frac{1}{10} \times 17.5 & =x(1)+y(1) \\
\Rightarrow & x+y & =1.75 \tag{1}
\end{align*}
\]
\(\mathrm{MeOH} \Rightarrow 2^{\text {nd }}\) equivalence point.
\(\Rightarrow \quad(\mathrm{m} . \mathrm{eq} .)_{\mathrm{HCl}}=(\mathrm{m} . \mathrm{eq} .)_{\mathrm{NaHCO}_{3}}\)
\(\Rightarrow \quad \frac{1}{10} \times 2.5=\mathrm{y}(1)\)
\(\Rightarrow \quad y=0.25\) m.mole
\(\Rightarrow \quad x=1.5 \mathrm{~m} . \mathrm{mole}\)
\(\therefore \quad\) Weight of \(\mathrm{NaOH}=1.5 \times 40 \times 10^{-3}=60 \mathrm{gm}\)

1 g of sample \(\mathrm{CaCO}_{3}\) was strongly heated and the \(\mathrm{CO}_{2}\) liberated was absorbed in 100 ml of 0.5 N NaOH solution. Assuming \(90 \%\) purity for the sample. How many mL of 0.5 M HCl would be required to react with the resulting solution to reach the end point in presence of phenolphthalein?
(A) 73 ml
(B) 41 ml
(C) 82 ml
(D) 100 ml

C
Weight of \(\mathrm{CaCO}_{3}=1 \times \frac{90}{100}=0.9 \mathrm{gm}\)
Mole of \(\mathrm{CaCO}_{3}=\frac{0.9}{100}\) mole
\(\therefore \quad\) mole of \(\mathrm{CO}_{2}\) liberated \(=\frac{0.9}{100}\) mole \(=9\) m.mole
\[
\begin{aligned}
& \mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\
& 9 \mathrm{~m} . \text { mole }
\end{aligned} \quad 9 \mathrm{~m} . \text { mole }
\]
\(\mathrm{CO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}\)


9 m.mole 50 m.mole 9 m.mole
L.R (50-18)
=32m.mole(Remaining)

\[
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}
\end{aligned}
\]
\(1^{\text {st }}\) equivalence point
\[
\begin{aligned}
(\text { m.eq. })_{\mathrm{HCl}} & =(\text { m.eq. })_{\mathrm{NaOH}}+(\text { m.eq. })_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \\
0.5 \times \mathrm{V} \times 1 & =32(1)+9(1) \\
\mathrm{V}_{\mathrm{HCl}} & =\frac{41}{0.5} \\
& =\frac{41}{5} \times 10 \\
\mathrm{~V}_{\mathrm{HCl}} & =82 \mathrm{ml}
\end{aligned}
\]

\section*{Hardness of water}

Soft water: Water which produces lathers (foam) upon mixing of soap into it easily.
Hard water: Water which does not produce foam with soap due to presence of \(\mathrm{Ca}^{2+}(\mathrm{aq}\).\() or\) \(\mathrm{Mg}^{2+}\) (aq.) in water.
Sodium stearate: \(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}\) (soap)

- These \(\mathrm{Ca}^{2+}\) or \(\mathrm{Mg}^{2+}\) ions are furnished by their water soluble salts (bicarbonates, chlorides or sulphates only)

\section*{i.e. \(\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}\)} \(\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}\)
\(\left.\mathrm{CaCl}_{2}\right\}\) Hardness causing salt \(\mathrm{MgCl}_{2}\) \(\mathrm{CaSO}_{4}\)

\section*{Degree of Hardness}
- It is the measure of total hardness causing salt present in water.
- Measured in ppm as following:
* \(\mathrm{CaCO}_{3}\) is hardness causing.

For a water sample:
\(\sum(\text { m.eq. })_{\text {salts }}=(\mathrm{m} . \text { eq. })_{\mathrm{CaCO}_{3}}\)
\(\therefore \mathrm{n}\)-factor of all \(=2\)
\(\Rightarrow \sum(n)_{\text {salts }}=(n)_{\mathrm{CaCO}_{3}}\)
Illustration:

One litre of a sample of hard water contains 1 mg of CaCl 2 and 1 mg of MgCl 2 Then the total hardness in terms of parts of CaCO3 per 106 parts of water by mass is:
(A) 1.954
(B) 1.260
(C) 0.946
(D) None of these

\section*{A1 (A)}

1 litre water means 1000 gm
Given: Mass of \(\mathrm{CaCl}_{2}=1 \mathrm{mg}\)
Moles of \(\mathrm{CaCl}_{2}=\frac{10^{-3}}{111}\) mole
Mass of \(\mathrm{MgCl}_{2}=1 \mathrm{mg}\)
Moles of \(\mathrm{MgCl}_{2}=\frac{10^{-3}}{95}\) mole
Hardness \(=\frac{\left(\frac{10^{-3}}{111}+\frac{10^{-3}}{95}\right)}{1000 \mathrm{~g}} \times 100 \mathrm{gm} \times 10^{6}\)
Hargness \(=1.954 \mathrm{ppm}\)

Q2 A given sample of water containing the following impurities:
\(\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=73 \mathrm{mg} / \mathrm{L}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=162 \mathrm{mg} / \mathrm{L}\)
\(\mathrm{CaSO}_{4}=136 \mathrm{mg} / \mathrm{L}, \mathrm{MgCl}_{2}=95 \mathrm{mg} / \mathrm{L}\)
\(\mathrm{CaCl}_{2}=111 \mathrm{mg} / \mathrm{L}\) and \(\mathrm{NaCl}=100 \mathrm{mg} / \mathrm{L}\)
Then the total hardness (temporary and permanent) of above water sample is:
(A) 300 ppm
(B) 350 ppm
(C) 450 ppm
(D) 500 ppm

A2 c
Let volume of water \(=1 \mathrm{~L}=1000 \mathrm{ml}\)
Mass of water \(=1000\) gm
Hardness \(=10^{-3} \frac{\left[\frac{73}{146}+\frac{162}{162}+\frac{136}{136}+\frac{95}{95}+\frac{111}{111}\right] \times 100 \times 10^{6}}{1000}=450 \mathrm{ppm}\)

\section*{Removal of Hardness:}
\[
\underset{\text { (Water soluble salts) }}{\mathrm{Ca}^{2+} \text { (aq.) or } \mathrm{Mg}^{2+}(\text { aq. }) \xrightarrow[\text { (Precipitate) }]{\text { every method }} \text { Water insoluble salt of } \mathrm{Ca} \text { or } \mathrm{Mg}}
\]

\section*{- Temporary hardness:}

It is easily removed by following process:
a) By boiling of water
\(\mathrm{M}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}.) \rightarrow \mathrm{MCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})\)
b) By the addition of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\)
\(\mathrm{M}\left(\mathrm{HCO}_{3}\right)_{2}\) (aq.) \(+\mathrm{Na}_{2} \mathrm{CO}_{3}\) (aq.) \(\rightarrow \mathrm{MCO}_{3}^{(\mathrm{s})}+2 \mathrm{NaHCO}_{3}\) (aq.)
c) Clarke's process:

By the addition of exact amount of \(\mathrm{Ca}(\mathrm{OH})_{2}\), because excess will also impart hardness in water.
```

$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ (aq.) $+\mathrm{Ca}(\mathrm{OH})_{2}$ (aq.) $\rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})+.\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCO}_{3}(\mathrm{~s})+\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

```

\section*{- Permanent hardness}
i) By adding \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) or \(\mathrm{Na}_{3} \mathrm{PO}_{4}\).
\(\mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{SO}_{4}\)
\(3 \mathrm{CaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \downarrow+6 \mathrm{NaCl}\)
ii) Ion exchange resins process.
\[
\underset{\substack{\text { cation } \\ \text { exchanger }}}{2 \mathrm{RnH}}+\mathrm{Ca}^{2+} \longrightarrow(\mathrm{Rn})_{2} \mathrm{Ca}+2 \mathrm{H}^{+}
\]
iii) Permutit process
\(\mathrm{Ca}^{2+} \mathrm{Na}_{2} \mathrm{Z} \rightarrow \mathrm{CaZ}+2 \mathrm{Na}^{+} \rightarrow \mathrm{Ca}^{2+} \mathrm{Na}_{2} \mathrm{Z} \rightarrow \mathrm{CaZ}+2 \mathrm{Na}^{+}\)
\(\mathrm{Mg}^{2+}+\mathrm{Na}_{2} \mathrm{Z} \rightarrow \mathrm{MgZ}+2 \mathrm{Na}^{+}\)
\(\left[\mathrm{Na}_{2} \mathrm{Z}\right.\) is the sodium zeolite \(\left.\left(\mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \mathrm{H}_{2} \mathrm{O}\right)\right]\)
iv) Calgon (Calcium gone) process
\(\mathrm{Na}_{6}\left(\mathrm{PO}_{3}\right)_{6}\) is called Calgon which is written as \(\mathrm{Na}_{2}\left[\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right]\)
\(\left.\left.\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right]^{2-}+\mathrm{M}^{2+} \rightarrow \mathrm{Na}_{2} \mathrm{M}\left(\mathrm{PO}_{3}\right)_{6}\right]^{2-}+2 \mathrm{Na}^{+}\)
where \(\mathrm{M}=\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+}\)

\section*{Illustration:}

A sample of hard water contains 20 mg of \(\mathrm{Ca}^{2+}\) ions per litre. How many milli equivalent of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) would be required to soften 1 litre of the sample?
(A) 0.5
(B) 0.1
(C) 0.2
(D) 1
(D)

Given mass of \(\mathrm{Ca}^{2+}\) ions \(=20 \mathrm{mg}\)
(m.eq. \()_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=(\text { m.eq. })_{\mathrm{Ca}^{2+}}\)
\(=\left(\frac{20}{40}\right) \times 2\)
\(=1\) milliequivalen

Consider the temporary hardness of water is due to the presence of \(\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}\) and specific gravity of hardwater is 1 . Then the weight of CaO required for \(10^{6}\) litre of water to remove the temporary hardness of 1000 ppm is:
(A) \(3.6 \times 10^{4} \mathrm{gm}\)
(B) \(6.5 \times 10^{4} \mathrm{gm}\)
(C) \(5.6 \times 10^{5} \mathrm{gm}\)
(D) \(8.5 \times 10^{5} \mathrm{gm}\)

A2
C Given Volume of water \(=10^{6} \mathrm{~L}\)
\[
=10^{9} \mathrm{ml}
\]
\[
\text { Mass of water }=10^{9} \mathrm{gm}
\]

Using, (in ppm) hardness \(=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { mass of water }} \times 10^{6}\)
\[
\begin{aligned}
& 1000=\frac{\mathrm{W}_{\mathrm{CaCO}_{3} \times 10^{6}}^{10^{9}}}{\mathrm{~W}_{\mathrm{CaCO}_{3}}=} 10^{6} \mathrm{gm} \\
= & 10^{4} \text { mole }
\end{aligned}
\]
i.e. \(\therefore\) mole of \(\mathrm{moeCaCO}_{3}=10^{4}\) mole
\[
\begin{aligned}
(\text { Eq. })_{\text {Salt }} & =(\text { Eq. })_{\text {CaO }} \\
10^{4} \times 2 & =\frac{w}{56} \times 2 \\
w & =\frac{10^{4} \times 2 \times 56}{2} \\
w & =56 \times 10^{4} \\
w & =5.6 \times 10^{5} \mathrm{gm}
\end{aligned}
\]
\(\qquad\)```

