Nomenclature of Organic Compounds

?

DISCLAIMER

"The content provided herein are created and owned by various authors and licensed to Sorting Hat Technologies Private Limited ("Company"). The Company disclaims all rights and liabilities in relation to the content. The author of the content shall be solely responsible towards, without limitation, any claims, liabilities, damages or suits which may arise with respect to the same."
?

Introduction of Organic Compounds

Why is an entire branch of chemistry devoted to the study of carbon containing compounds?

- We study organic chemistry because just about all of the molecules that make life possible-proteins, enzymes, vitamins, lipids, carbohydrates, and nucleic acids-contain carbon, so the chemical reactions that take place in living systems, including our own bodies, are organic reactions.
- Most of the compounds found in nature-those we rely on for food, medicine, clothing (cotton, wool, silk), and energy (natural gas, petroleum).

Berzelius Vital Force Theory

- According to vitalism, organic compounds were only those that came from living organisms, and only living things could synthesize organic compounds through intervention of a vital force.
- Inorganic compounds were considered those compounds that came from nonliving sources.
- Because chemists could not create life in the laboratory, they assumed they could not create compounds with a vital force. With this mind-set, you can imagine how surprised chemists were in 1828 when Friedrich Wohler produced urea-a compound known to be excreted by mammalsby heating ammonium cyanate, an inorganic mineral.
- Failure of Berzelius vital theory and synthesis of first organic compound.

Introduction

Organic chemistry and you

- You are already a highly skilled organic chemist. As you read these words, your eyes are using an organic compound (retinal) to convert visible light into nerve impulses.
- When you picked up book, your muscles were doing chemical reactions on sugars to give you the energy you needed.

Definition

Old definitions of Organic

Compounds

- Compounds which we can derive from living organisms (Plants \& Animals) are called organic compounds

Compounds

1. Formic acid
2. Sugar

Source
Ant
Sugarcane

- Specialized field of chemistry called organic chemistry, which derives its name from the fact that in the 19th century most of the them are known carbon compounds were considered to have originated in living organisms

Derivatives of Hydrocarbon

- If we replace one or more than Hydrogen from Hydrocarbon by an atom or group of atoms then compound formed is called derivative of Hydrocarbon.

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \text { ethanol }
\end{aligned}
$$

Hydrocarbon
Hydrocarbon derivative

* Some Properties of Carbon

Catenation :

- Due to catenation properties of carbon, it can form long bonded covalent structures. (Chain form)
- Carbon can form single, double or triple bond (covalent).
Eg.: Alkanes $\rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
Alkenes $\rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
Alkynes $\rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
- Carbon in general shows valency 4.
(ability to form bond with carbon or other atoms.)
- It is not necessary to show valency 4. It may be variable sometime.

Acetone is used in some nail polish removers

Definition

Modern Definition of Organic

Compounds

- Hydrocarbon and their derivatives are called organic compounds.
- Compounds containing carbon and Hydrogen only are called Hydrocarbons.

Point to remember

- Some Compounds may appear as organic compounds but they are actually inorganic e.g., CO_{2}, $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}$.

Types of Formula

1. Molecular formula :

Example :
(i) Water $\rightarrow \mathrm{H}_{2} \mathrm{O}$
(ii) Sulphuric Acid $\rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
2. Empirical formula :

Example :

Molecular formula
Empirical formula
(i) Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(ii) Propene $\mathrm{C}_{3} \mathrm{H}_{6}$

Structural formula :

Example: $\mathrm{H}_{2} \mathrm{SO}_{4}$

(Structural Formula)

* Representation of Organic Compounds Organic chemists use a variety of formats to write structural formulas

Definition

Formula which represent actual number of atoms in a molecule.

Definition

Formula which represents the simplest ratio of atoms present in it.

Definition

Formula which shows connectivity between atoms and groups.

Dash formula
4. Dash-formula :

Condensed formula

Bond-line formula

Definition

Dash structural formulas have lines that show bonding electron pairs, and include elemental symbols for all of the atoms in a molecule.
Q (i) $\mathbf{C}_{2} \mathbf{H}_{6}$
(ii) $\mathrm{C}_{4} \mathrm{H}_{8}$
(iii) $\mathrm{C}_{3} \mathrm{H}_{4}$

Sol
(i) $\mathrm{C}_{2} \mathrm{H}_{6}$

(iii) $\mathrm{C}_{3} \mathrm{H}_{4} \quad \rightarrow \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\underset{\substack{\mathrm{C} \\ \underset{\mathrm{H}}{\mathrm{L}} \\ \mathrm{H}}}{\substack{\mathrm{H}}}$
5. Condensed Structural Formulas :

Definition

In fully condensed formulas, all of the atoms that are attached to the carbon are usually written immediately after that carbon, listing hydrogens first.

Condensed formulas

Examples (Unsolved)

(a) $\mathrm{C}_{2} \mathrm{H}_{6}$
\rightarrow
(b) $\mathrm{C}_{3} \mathrm{H}_{6}$
(d) $\mathrm{C}_{4} \mathrm{H}_{10}$
(c) $\mathrm{C}_{5} \mathrm{H}_{10}$
\rightarrow
(d) $\mathrm{C}_{4} \mathrm{H}_{10}$

Sol (a) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ or $\mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}$
(c) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(d) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

6. Bond-Line Formulas:

Examples:

Bond line notation :

Terminal points and bends represent C , all other valencies are filled by H . Hydrogen atom attach to carbon is not shown.
Examples:
(a) $\mathrm{C}_{3} \mathrm{H}_{8} \quad \rightarrow$
(b) $\mathrm{C}_{5} \mathrm{H}_{1}$

or \longrightarrow
(c)

(d) $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow$

(e) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$

$$
\rightarrow
$$

Degree of Carbon :

Degree of a given carbon means number of carbon atoms directly attached to particular carbon atom has to be considered.
1° carbon \rightarrow Attached to 1 C - also known as primary carbon

Definition

The most common type of structural formula used by organic chemists, and the fastest to draw, is the bond-line formula.
(Some chemists call these skeleton formulas.)

Note :

- If the compound has any hetroatom it will be shown any hydrogen atom attached with it will also be shown.
2° carbon \rightarrow Attached to 2 C - also known as
secondary carbon

3° carbon \rightarrow Tertiary carbon

4° carbon \rightarrow Quaternary carbon

Degree of Hydrogen :
Similarly we define degree of H atom as the degree of carbon atom to which it is attached.
$1^{\circ} \mathrm{H} \quad \rightarrow \quad$ Attached to $1^{\circ} \mathrm{C}$
$2^{\circ} \mathrm{H} \quad \rightarrow \quad$ Attached to $2^{\circ} \mathrm{C}$
$3^{\circ} \mathrm{H} \quad \rightarrow \quad$ Attached to $3^{\circ} \mathrm{C}$
$4^{\circ} \mathrm{H} \rightarrow \quad$ Not possible
Example :

Q. Compound $\quad 1^{\circ} \mathrm{C} \quad 2^{\circ} \mathrm{C} \quad 3^{\circ} \mathrm{C} \quad 4^{\circ} \mathrm{C} \quad 1^{\circ} \mathrm{H} \quad 2^{\circ} \mathrm{H} \quad 3^{\circ} \mathrm{H}$
(i)

(ii)

(iii)

(iv)

Sol

Compound
$1^{\circ} \mathrm{C}$
$2^{\circ} \mathrm{C}$
$3^{\circ} \mathrm{C}$
$4^{\circ} \mathrm{C}$
$2^{\circ} \mathrm{H}-3^{\circ} \mathrm{H}$

12
6.
(ii)
 0

2
(iii)

2

0
6
0
0
0
0
0
10
10 0

Degree of Alcohols :

Example :
S.No.
(i)

Compound
(ii)

Degree of Alcohol

 1° alcohol 2° alcohol
(iii)
3° alcohol

Note :

- Alcohols are hydrocarbon that contains -OH (hydroxy) group.
- Degree of alcohol is degree of carbon atom to which -OH group is attached.

Identify the degree of given alcohols
(i)

(ii)

(iii)

(iv)

(ii)

3°
3°

Degree of Alkyl halide (R-X) :
(i) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{Cl} \quad 1^{\circ}$ halide

(iii)

3° halide

Definition

Degree of alkyl halide is the degree of carbon atom directly attached to halogen.

Identify the degree of given halides :

(i)

(ii)

(iii)

(iv)

Sol (i)

(ii)

(iii)

(iv)
 2°

Degree of Amines $\left(\mathrm{R}-\mathrm{NH}_{2}\right)$:
Degree of amines is numbers of carbon atoms directly attached with nitrogen.
Examples:
$\mathrm{CH}_{3}-\mathrm{NH}_{2}$
$\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}$

(1${ }^{\circ}$ amine)
(2° amine)
(3° amine)

Identify the degree of given amines ($1^{\circ}, 2^{\circ}, 3^{\circ}$ amine) :
(i)

(ii)

(iii)

Sol s.No.
Compound
(i)

$\checkmark \times \times$
\times
(ii)

$\times \checkmark \times$

$\times \quad \times$
(iii)

Functional Groups and Classification

Functional groups

Definition

Part of the molecules which are responsible for the characteristics chemical reactions of those molecules.

TYPE OF FUNCTIONAL GROUPS

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	(Alkene)
$\mathrm{CH} \equiv \mathrm{CH}$	(Alkyne)
$\mathrm{R}-\mathrm{OH}$	(Alcohol)
R-SH	(Thio alcohol)
R-O-R	(Ether)
R-S-R	(Thio ether)
$\mathrm{R}-\mathrm{CH}=\mathrm{O}$	(Aldehyde)
	(Ketone)
$\mathrm{R}-\mathrm{COOH}$	(Carboxylic acid)
$\mathrm{R}-\mathrm{SO}_{3} \mathrm{H}$	(Sulphonic acid)
$\mathrm{R}-\mathrm{C} \equiv \mathrm{N}$	(Cyanide)
$\mathrm{R}-\stackrel{\oplus}{\mathrm{N}} \equiv \stackrel{\ominus}{\mathrm{C}}$	(Isocyanide)
	(Ester)
	(Amide)
	(Acid halide)
$\mathrm{R}-\mathrm{N}=\mathrm{O}$	(Nitroso)
$-\mathrm{N}=\mathrm{N}-$	(Azo)

(Imine)

Type of functional groups:

Point to remember
Due to difference in their properties $1^{\circ}, 2^{\circ}, 3^{\circ}$ amine are treated as different functional groups but primary, secondary and tertiary alcohols are considered as same functional groups.

Q Identify the function group present in given molecule and encircle them:

Alcohol

Identify the function group present in given molecule and encircle them:

Q
Identify the function group present in given molecule and encircle them:

Number of different functional group present in given compound

Total 5

Q Penicillin has following structure

Number of π-bonds possible in given structure

Homologous Series

Let's understand

A homologous series is a series of compounds having same functional group (thus having same chemical properties) and consecutive members have a difference of molecular mass '14’ or differ in molecular formula by $-\left(\mathrm{CH}_{2}\right)-$ unit.

Homologous series of alkanes (also known as paraffins). Each consecutive member differ by $-\mathrm{CH}_{2}-$

Homologous series

 of alcohol.
Example-3

-

-

Calculation of number of σ bond and π bonds in the compound
σ bond :

π bond :
Ex. $\quad \mathrm{C}_{2} \mathrm{H}_{4}$

$\Rightarrow 5 \sigma$ bond

Methanoic acid

Ethanoic acid

Propanoic acid

Butanoic acid Pentanoic acid

Homologous series of carboxylic acid.

Introduction

- The first bond formed by atom is always σ bond. It is formed by axial overlapping. Single bonds are always σ bonds.

Introduction

\|퉅

- If two atoms forms more than one bond between them except the first bond, rest all are π bonds. They are formed by sideways overlapping

Find the number of bonds (σ bond and π bond) in following compounds :
(i) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(iii)

(iv)

Sol

Compound

(i) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(ii)

(iii)

(iv)

σ bond π bond
32
$7 \quad 1$

9

21
3

Number of π bonds present in given compound is

Number of π bonds present in given compound is:

Sol

$3+2+2+1=8$

Nomenclature

Mainly three systems are adopted for naming an organic compound
(i) Common names or Trivial system
(ii) Derived system
(ii) IUPAC system or Jeneva system

Trivial System :

Introduction
Initially organic compounds are named on the basis of source from which they were obtained for Some typical compounds in which common and trivial names are also differ.

S. NO.	ORGANIC COMPOUND	TRIVIAL NAME	SOURCE
1	$\mathrm{CH}_{3} \mathrm{OH}$	Wood spirit or Methyl spirit	Obtained by destructive distillation of wood
2	$\mathrm{NH}_{2} \mathrm{CONH}_{2}$	Urea	Obtained from urine
3	CH_{4}	Marsh gas (fire damp)	It was produced in marshy places
4	$\mathrm{CH}_{3} \mathrm{COOH}$	Vinegar	Obtained from Acetum -i.e. Vinegar
5		Oxalic acid	Obtained from oxalis plant
6	HCOOH	Formic acid	Obtained from formicus [Red ant]
7		Lactic acid	Obtained from sour mild
8		Malic acid	Obtained from apples
9	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	Butyric acid	Obtained from butter
10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	Caproic acid	Obtained from goats

S.NO.	ORGANIC COMPOUND	TRIVIAL NAME	SOURCE (COMMON NAME)
1	CH_{4}	Marsh gas	Methane
2	$\mathrm{CH}_{3} \mathrm{OH}$	Wood spirit	Methyl alcohol
3	$\mathrm{CH}_{3} \mathrm{COOH}$	Vinegar	Acetic acid
4		Acetone	Dimethyl ketone
Derived System			Definition
This system is reserved for the following nine homologous series.			- According to this system any compound is given name according to the parent name of the homologous series.

S. NO.	NAME OF HOMOLOGOUS SERIES	DERIVED NAME	STRUCTURE OF GROUP
1	Alkane	Methane	
2	Alkene	Ethylene	> $\mathrm{C}=\mathrm{C}<$
3	Alkyne	Acetylene	$-\mathrm{C} \equiv \mathrm{C}-$
4	Alkanol	Carbinol	$\mathrm{C}-\mathrm{OH}$
5	Alkanal	Acetaldehyde	

IUPAC system of Nomenclature

- International union of pure and applied chemistry.
- IUPAC system for naming is something that is very similar to addressing a person with his complete designation.

Definition

- According to IUPAC naming of organic compounds have some standard process may be called naming method in which anything about naming of molecule in a systematic way.
$\Downarrow \quad \Downarrow$

Dr.

(Prefix)

Abdul
Main name
\Downarrow

Kalam

Surname

Systematic IUPAC name follow SPWPS rule

\mathbf{S}	\mathbf{P}	\mathbf{W}	\mathbf{P}	\mathbf{S}
\Downarrow	\Downarrow	\Downarrow	\Downarrow	\Downarrow
Secondary prefix	Primary prefix	Word	Primary	Secondary suffix

Secondary prefix

- It defines substituent \& position of substituent.
- IUPAC considers following given groups as substituents :

1. - R $\quad \Rightarrow \quad$ alkyl

Examples: $-\mathrm{CH}_{3} \quad \Rightarrow \quad$ methyl
$-\mathrm{CH}_{2} \mathrm{CH}_{3} \quad \Rightarrow \quad$ ethyl
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \Rightarrow \quad$ propyl
$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \Rightarrow \quad$ butyl
-Ph $\quad \Rightarrow \quad$ phenyl
2. -OR $\quad \Rightarrow \quad$ alkoxy

Examples: $-\mathrm{OCH}_{3} \quad \Rightarrow \quad$ methoxy
$-\mathrm{OC}_{2} \mathrm{H}_{5} \quad \Rightarrow \quad$ ethoxy
$-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \Rightarrow \quad$ propoxy
-OPh $\quad \Rightarrow \quad$ phenoxy
3. $\mathbf{- X} \quad \Rightarrow \quad$ Halo

Examples: -F $\quad \Rightarrow \quad$ Fluoro
$-\mathrm{Cl} \quad \Rightarrow \quad$ Chloro
$-\mathrm{Br} \quad \Rightarrow \quad$ Bromo
$-1 \quad \Rightarrow \quad$ Iodo
4. $-\mathrm{NO}_{2} \quad \Rightarrow \quad$ Nitro
5. - NO $\quad \Rightarrow \quad$ Nitroso
6. $-\mathrm{N}_{3} \quad \Rightarrow \quad$ Azido
19.

Primary prefix

- A primary prefix is used simply to distinguish cyclic from acyclic compounds.
- A primary prefix, cyclo is used immediately before the word root.
- It defines nature of parent carbon chain.
- Open chain (alicyclic)
- Closed chain (cyclic)

$$
\begin{array}{ll}
\Rightarrow & \\
\Rightarrow & \text { Cyclo } \\
\Rightarrow & \text { Bicyclo } \\
\Rightarrow & \text { Spiro }
\end{array}
$$

- Bicyclic
- Spirane

Word Root

- It is the basic unit of the name. It denotes the number of carbon atoms present in the principal chain (the longest possible continuous chain of carbon atoms including the functional group and based upon the common names of alkanes) of the organic molecules.
According to number of carbon's in parent Cchain.

$$
\begin{array}{ll}
\mathrm{C}_{1} \rightarrow \text { meth } & \mathrm{C}_{11} \rightarrow \text { undec } \\
\mathrm{C}_{2} \rightarrow \text { eth } & \mathrm{C} 12 \rightarrow \text { dodec } \\
\mathrm{C}_{3} \rightarrow \text { prop } & \mathrm{C}_{13} \rightarrow \text { tridec } \\
\mathrm{C}_{4} \rightarrow \text { but } & : \\
\mathrm{C}_{5} \rightarrow \text { pent } & : \\
\mathrm{C}_{6} \rightarrow \text { hex } & \mathrm{C}_{20} \rightarrow \text { eicos } \\
\mathrm{C}_{7} \rightarrow \text { hept } & : \\
\mathrm{C}_{8} \rightarrow \text { oct } & : \\
\mathrm{C}_{9} \rightarrow \text { non } & : \\
\mathrm{C}_{10} \rightarrow \text { dec } & \mathrm{C}_{100} \rightarrow \text { hect }
\end{array}
$$

Primary Suffix

- A primary suffix is always added to the word root to indicate whether the carbon chain is saturated or unsaturated.
- The three basic primary suffixes are given below :

S.NO.

1
(a) Saturated
(b) Unsaturated with one double bond
(c) Unsaturated with one triple bond
-ane

3
-yne

Alkane

Alkene

Alkyne

Compound	$\mathbf{2}^{\circ}$ prefix	$\mathbf{1}^{\circ}$ prefix	Word root	$\mathbf{1}^{\circ}$ suffix	$\mathbf{2}^{\circ}$ suffix	IUPAC name
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-	-	prop	ane	-	Propane
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$	-	-	prop	ene	-	Propene
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$	-	-	prop	yne	-	Propyne
$\mathrm{HC} \equiv \mathrm{CH}$	-	-	eth	yne	-	Ethyne
\square	-	cyclo	but	ane	-	Cyclobutane
\square	-	cyclo	but	ene	-	Cyclobutene
\square	cyclo	oct	yne	-	Cyclooctyne	
\square						

- If the parent carbon chain contain two, three or more double or triple bond, numerical prefix such as di (for two), tri (for three), tetra (for four) etc. are added to the primary suffix. For example.

S.NO.	TYPE OF CARBON CHAIN	PRIMARY SUFFIX	GENERAL NAME
1	(a) Unsaturated with one double bond	-diene	Alkadiene
2	(b) Unsaturated with one triple bond	-diyne	Alkadiyne

Secondary Suffix

- A secondary suffix is always added to the primary suffix to indicate the nature of the functional group present in the organic compounds. Secondary suffix of some important functional groups are given below :

S.NO.	CLASS OF ORGANIC COMPOUNDS	FUNCTIONAL GROUP
1	Alcohols	-OH
2	Aldehydes	-CHO
3	Ketones	$>\mathrm{C}=\mathrm{O}$
4	Carboxylic acids	-COOH
5	Acid amides	$-\mathrm{CONH}_{2}$
6	Acid chlorides	-COX
7	Esters	-COOR
8	Nitriles	-CN
9	Thioalcohols	$-\mathrm{SH}^{2}$
10	Amines	$-\mathrm{NH}_{2}$

Note:

- We will discuss secondary suffix in `detail after mono functional group naming.

Nomenclature of Alkane

Rule-1 :

- Select the longest carbon chain containing maximum number of carbon and this longest carbon chain is also called parent carbon chain (PCC).
- Longest carbon chain not always straight.

Eg. :

Rule-2 :

- If two or more carbon chain contains same number of carbon then PCC is considered which has more number of substituents.
Eg. :

Substitutents

Rule-3 :

- Numbering of parent carbon chain is done by lowest locant rule.

Lowest Locant Rule :

- According to this rule numbering is done in such a way so that substituent will get lowest number.

Eg.:

Note:

- In IUPAC naming numbers of substituent will be separated by (,) comma and number \& alphabet is separated by ('-’) hyphen.
-

Rule-4:

- If two or more different substituents are present at parent carbon chain then numbering is done according to lowest locant rule while writing IUPAC name follow alphabetical order.

Eg. :

Rule-5 :
If two or more similar substituents are present on parent carbon chain then use di, tri, tetra etc. before 2° prefix while writing IUPAC name but di, tri, tetra, etc. are not considered alphabetically.

Eg. :

(2)

3,4-dimethylheptane
(3)

> 3-ethyl-3,4-dimethylheptane

Rule-6:

- If two or more substituents are present on parent carbon chain and they get same number from either side during numbering then numbering is done by alphabetical order.

Eg. :

2-bromo-3-chlorobutane

2.

5.
3.

4.

8.

6.

7.

1.

2,2-dimethylpropane
3.

2,2,4-trimethylhexane
5.

5-bromo-2,3-dichlorohexane
7.

3,4-dimethylhexane
2.

4.

3,3-diethylpentane

4-ethyl-3,3-dimethylhexane
6.

3-chloro-4-ethylhexane
8.

3-bromo-1-chloro-2-iodopentane

Nomenclature of cyclic alkane

Rule :

- The cyclic structure or ring is considered as P.C.C. till the number of carbon in the ring is same or greater than number of carbon in chain.
- Rest all rules are similar as nomenclature of alkane.

Examples:
1.
 \rightarrow 1-methylcyclohexane
2.

3.
 \rightarrow Propylcyclopropane
4.
 \rightarrow 1-cyclopropylbutane
5.
 \rightarrow 1-ethyl-1,2-dimethylhexane

Nomenclature of Alkene \& Alkyne

Rule-1 :

Parent carbon chain selection :

- Select the longest carbon chain containing maximum number of multiple bonds.
- If two chains having same number of multiple bonds then check maximum number of carbons to select parent carbon chain.
- If multiple bonds \& carbon both are same then see maximum number of substituent to select parent carbon chain.
- Number of multiple bond $>$ Number of carbon $>$ Number of substituent (priority order)

EXAMPLE-1 :

EXAMPLE-3 :

Rule-2 :
Numbering of parent carbon chain :

- While doing numbering in alkene and alkyne minimum number should be given to multiple bond.
- If multiple bond getting same number from either side then give minimum number to substituent.
- For numbering multiple bond priority is high compare to substituent

Examples:

2. $\frac{3}{\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{Br}}$

1-bromoprop-1-ene
3. $\mathrm{Br}-\begin{gathered}3 \\ \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\end{gathered}$

3-bromoprop-1-ene
4.

1-bromo-3-chloroprop-1-ene
5. $\mathrm{Br}-\frac{3}{2} \quad \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}$

3-bromo-1-chloroprop-1-ene
6.

1-bromobut-2-ene

Rule-3:
If two or more similar multiple bonds are present on PCC then use di, tri, tetra etc. before 1° suffix and before this di, tri, tetra etc. 'a' should be written.

Examples:

Hepta-1,3-diene
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
2. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \quad$ Penta-1,4-diene

Rule-4 :
If in parent carbon chain alkene and alkyne both are present and they are getting same number from either side i.e. in between alkene and alkyne) then numbering is done from alkene side because alphabetically ene $>$ yne.

Examples:
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Pent-1-en-4-yne

$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
2. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ Hept-2-en-5-yne
1.

2.

3.

5.
6. $\mathrm{Br}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
7. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

Sol 1. 3-ethylhex-1-ene
3. 4-chlorobut-1-yne
5. 1-cyclopropyleth-1-ene
7. Hex-1-en-4yne
2. 4-ethylhept-1-ene
4. Buta-1,3-diyne
6. 1-bromobut-1-yne

Nomenclature of cyclic alkene

Rule :

All rules are similar to alkene \& alkyne but during numbering 1 number is always given to alkene.

3-methylcyclohex-1-ene

Sol 1. 3,4-dimethylcyclobut-1-ene
2. 1,4-dimethylcyclobut-1-ene
3. 1-bromo-2-chlorocyclobut-1-ene
4. 3-bromo-6-chlorocyclohex-1-ene
5. 1-bromo-4-chlorocyclopenta-1,3-diene
6. 6-bromo-3-ethyl-3-methylcyclohex-1-ene

Nomenclature of Complex Locant

Complex substituent (Locant)

Definition

Complex locant is defined as which consist of substituent in substituent.

S.NO.	COMPLEX LOCANT	COMMON NAME	IUPAC NAME
1		Iso propyl	1-methyl ethyl
2		Sec-butyl	1-methyl propyl
3		Iso-butyl	2-methyl propyl
4		Iso-pentyl	3-methyl butyl
5		Tert-butyl	1,1-dimethyl ethyl
6		Neo pentyl	2,2-dimethyl propyl

NOTE :

- Complex locant are written in square brackets []
- In complex locant di, tri, tetra etc. should be considered in alphabetical order. iso, neo, sec. are also considered in alphabetic order.
- IUPAC name will be preferred over common name.
- If two similar complex locant are present then use bis, tris, tetrakis etc.
[di $=$ bis, tri $=$ tris, tetra $=$ tetrakis $]$

Examples:

5-[1,1-dimethylethyl]undecane

4,5-bis [1,1-dimethylethyl]nonane

3.

6.

1.

4.

7.

10.

13.
2.

8.

9.

12.

14.

Sol. 5-[1-methylpropyl]nonane
3. 3-ethyl-2,2 dimethylhexane
5. 1-[1-methylethyl]cyclohexane
7. 1-ethyl-1-methylcyclohexane
9. 1-[1-methylpropyl]cyclohexane
10. 1-[1-methylcyclopropyl]cyclohexane
11. 1-cyclopropyl-3[1-methylethyl]cyclohexane
12. 3-methyl-5-[1-methylethyl]-4-propyl-octane
13. 2,2,3-trimethyl-6[1-methylethyl]nonane
14. 2,2,3,7,8,8-hexamethylnonane

Substitutent Consist of Multiple Bond

1. If substituent having double bond:
2° prefix / secondary prefix alkenyl

Examples:

(i) $-\stackrel{1}{\mathrm{C}} \mathrm{H}=\stackrel{2}{\mathrm{C}} \mathrm{H}_{2}$
ethenyl
(ii) $\quad-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ prop-1-enyl
(iii) $-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ prop-2-enyl
(iv)

2. If substituent having triple bond :
2° prefix alkynyl
Examples:
(i) $\quad-\mathrm{C} \mathrm{CH}$
ethynyl
(ii) $\quad-\mathrm{C} \mathrm{C}-\mathrm{CH}_{3}$
prop-1-ynyl
(iii) $-\mathrm{CH}_{2}-\mathrm{C} \mathrm{CH}$
prop-2-ynyl
4-ethynylhepta-1,6-diene
3. If substituent attached to parent carbon
chain by multiple bond:
2° prefix \Rightarrow alkylidene

Examples:
$\begin{array}{ll}\text { (i) } & =\mathrm{CH}_{2} \\ \text { (ii) } & =\mathrm{CH}-\mathrm{CH}_{3} \\ \text { (iii) } & =\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\end{array}$
(iv) $=$
(v)

Example:

Methylene or methylidene only for this
Ethylidene
Propylidene

Cyclopropylidene

Cyclobutylidene

4-methylenehepta-1,6-diene
'or'
4-methylidenehepta-1,6-diene

Note :

1. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ vinyl
2. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$ allyl
3.

4.

vicinal (vic)
$\mathrm{CH}_{2}=\mathrm{CH}-$ (vinylic carbon)
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\quad$ (allylic carbon)

gem-dichloride

Example :

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$, How many gem dibromide are possible and how many vicinal dibromide are possible ?
Sol

Geminal

Nomenclature of Epoxy

 2° prefix - epoxy
2.

3.

4.

5.

Sol 1.

1,2-epoxyethane
2.

1, 2-epoxypropane

2,3-epoxybutane

2,4-epoxypentane
5.

$(2,3),(4,5)$-diepoxyhexane

IUPAC Naming of Functional Groups

IUPAC Naming of Functional Groups

1. Carboxilic Acid
2. Sulphonic Acid
3. Acid Anhydride
4. Ester
5. Nomenclature of Carboxylic Acid 2° suffix oic acid

6. | $\mathrm{H}-\mathrm{C}-\mathrm{OH}$ |
| :---: |
| O |
| O |
7.

7.

Sol 1. $\mathrm{H}-\stackrel{1}{\mathrm{C}}-\mathrm{OH}$
2.

3.

4.

2.

3.

5.

6.

Methanoic acid

Ethanoic acid

2-methylbut-2-en-oic acid

3[cycloprop-2-enyl]butanoic acid
5.

Penta-2,4-dienoic acid
6. $\quad \stackrel{2}{\mathrm{C}} \mathrm{Cl}_{3}-\underset{\mathrm{O}}{\stackrel{1}{\mathrm{C}}}-\mathrm{OH}$

2,2,2-trichloroethanoic acid

2-[cyclohexa-1,3 dienyl]ethanoic acid

Nomenclature of Dicarboxylic Acid

 General molecular formula :

$\mathbf{N} \Rightarrow \mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
O	M	S	G	A	P	S
Oxalic	Malonic	Succinic	Glutaric	Adipic	Pimelic	Suberic
acid	acid acid	acid	acid	acid	acid	

1. $\mathrm{HO}-\underset{\mathrm{O}}{\mathrm{C}} \underset{\mathrm{O}}{\mathrm{C}} \underset{\sim}{\mathrm{C}}-\mathrm{OH}$
2.

3. $\mathrm{HO}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\sim}{\mathrm{C}}-\mathrm{OH}$
4. $\mathrm{HO}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$
5. $\mathrm{HO}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\substack{\mathrm{C}}}{\mathrm{C}}-\mathrm{OH}$

Sol 1. $\mathrm{HO}-\stackrel{2}{\mathrm{C}}-\stackrel{1}{\mathrm{C}}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{OH}$
Common name : Oxalic acid IUPAC name : Ethane-1,2-dioic acid
2.

Common name : Succinic acid IUPAC name : Butane-1,4-dioicacid
3.

Common name : Glutaric acid
IUPAC name : Pentane-1,5-dioic acid
4.

Common name : Pimelic acid
IUPAC name : Hetpane-1,7-dioic acid
5.

Common name: Suberic acid
IUPAC name : Octane-1,8-dioic acid
2. Nomenclature of Sulphonic Acid 2° suffix Sulphonic acid
3.
38.
4.

But-3-ene-1-sulphonic acid
5.

Pent-1-en-4-yne-3-sulphonic acid
3. Nomenclature of Anhydride 2° suffix oic anhydride

Examples:

1.

2.

1. $\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}} \underset{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\underset{\|}{\mathrm{C}}-\mathrm{H}$
2.

5.

2.
4.

39.

Sol 1. $\mathrm{H}-\underset{\mathrm{C}}{\stackrel{1}{\mathrm{C}}-\mathrm{O}} \underset{\mathrm{O}}{\stackrel{1}{\mathrm{C}}}-\mathrm{H}$

Methanoicanhydride

2. $\mathrm{H}_{3} \stackrel{2}{\mathrm{C}}-\underset{\mathrm{O}}{\stackrel{1}{\mathrm{C}}}-\mathrm{O}-\stackrel{1}{\mathrm{C}}-\stackrel{2}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{3}{\mathrm{C}_{4}} \mathrm{H}_{3}$

Ethanoicpropanoicanhydride
3.

2-methylpropanoic-prop-2-enoic anhydride
4.

2-bromoethanoic-2-chloroethanoic anhydride
5.

Cyclohexane-1,2-dicarboxylic anhydride
4. Nomenclature of Ester 2° suffix oate

IUPAC name : alkylalkanoate

5.

7.

4.

6.

Sol 1. $\quad \stackrel{3}{\mathrm{H}_{3}} \stackrel{\stackrel{2}{\mathrm{C}}}{\mathrm{C}} \mathrm{H}_{2}-\underset{{ }_{\mathrm{O}}^{\mathrm{C}}}{\stackrel{1}{\mathrm{C}}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Ethylpropanoate

2.

Ethyl-2-bromopropanoate
3.

Methylmethanoate
4.

[1-chloroethenyl]-2-bromobutanoate
5.

Cyclopropylpentanoate
6. $\mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{O} \underbrace{1}_{2}$

Pent-3-enylethanoate
7.

2-bromo-1-methyleth-1-eyl-2chlorobutanoate

Priority List of Functional Group

S.NO.	FUNCTIONAL GROUP	$2 \circ$ PREFIX	$2 \circ$ SUFFIX
1	-COOH	carboxylic acid	oic acid
2	$-\mathrm{SO}_{3} \mathrm{H}$	sulpho	sulphonic acid

41.

3		-	oic anhydride
4		Alkanoyl oxy or alkoxy carbonyl	oate
5		halo formyl	oylhalide
6		carbamoyl	amide
7	-CN	cyano	nitrile
8	$-\mathrm{N} \equiv \mathrm{C}$	isocyano	isonitrile
9	- CHO	3 or 4	al
10		keto/oxo	one
11	-OH	hydroxy	ol
12	-SH	sulphonyl/ mercapto	thiol
13	$-\mathrm{NH}_{2}$	amino	amine
14		epoxy	-

42.

IUPAC Naming of Functional Groups

Nomenclatue of Acid Halide

2° suffix : oyl halide
$\left[\begin{array}{c}\mathrm{R}-\mathrm{C} \\ \mathbf{O}\end{array}\right]$

Let's understand

1. Acid Halide
2. Amide
3. Cyanide
4. Aldehyde
5. Ketone

Q 1. $\underset{\substack{\mathrm{O}}}{\mathrm{C}-\mathrm{Cl}}$
4.

2. $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{Cl}$
3.

5.

6.

7.

8.

1.

2.

Ethanoylchloride
3.

Prop-2-en-1-oylchloride
4.

Prop-2-yn-1-oylchloride
5.

Penta-2,4-dien-1-oylchloride
6.

2-methylpropan-1-oylchloride
7.

8.

3-cyclopropylpentan-1-oylchloride

Nomenclatue of Amide

2° suffix : amide

1.

2.

3.

4.

5.

2-bromo-N,N-dimethylpropanamide
1.

2.

3.

N -ethylethanamide
4.

N, 2-dibromopropanamide
5.

N -bromo-N-chloropropanamide

Nomenclature of Cyanide (R-CN) 2° suffix nitrile

Q 1. $\mathbf{C H}_{3}-\mathbf{C} \equiv \mathbf{N}$
3.

5. $\mathrm{CH}_{2}=\mathbf{C H}-\mathrm{CN}$
7.

2.
4.

6.

2.

Ethanenitrile
Sol 1. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$
Pentanenitrile
3.

2-ethylhexanenitrile
4. $\overbrace{\mathrm{C}=\mathrm{N}}^{2}$

2-ethylbut-3-ene-1-nitrile
5. $\stackrel{5}{\mathrm{C}} \mathrm{H}_{2}=\stackrel{4}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \equiv \stackrel{2}{\mathrm{C}}-\stackrel{1}{\mathrm{C}} \equiv \mathrm{N}$

Pent-4-en-2-yne-1-nitrile
6.

7.

3-bromo-2-[1-chloroethenyl]-but-3-enenitrile

Nomenclature of Aldehyde

2° suffix al

$$
\left[\begin{array}{c}
\mathrm{R}-\mathrm{C}-\mathrm{H} \\
\mathrm{O} \\
\mathrm{O}
\end{array}\right]
$$

Q 1. $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$
4.

2. $\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$
7.

4.

5.

6.

7.

5.

8.

Ethanal

Methanal

Prop-2-en-1-al

But-2-en-1-al

2-ethylpent-1-al

4-[cyclolprop-2-enyl]pentan-1-al

Pent-4-en-1-al
3.

6.

9. $\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}}-\underset{\mathrm{O}}{\mathrm{C}}-\underset{\mathrm{Cl}}{\mathrm{C}}-\mathrm{H}$

Pent-4-
8.

2-cyclopentylethan-1-al
9.

Propan-1,3-dial

Nomenclature of Ketone

2° suffix one
1.

4.

7.

Sol 1

1. $\stackrel{1}{\mathrm{C}} \mathrm{H}_{3}-\stackrel{2}{\mathrm{C}}-\stackrel{3}{\mathrm{C}} \mathrm{H}_{3}$
2.

2.

5.

8.

Propan-2-one

Butan-2-one

But-3-en-2-one

Pent-3-en-2-one

2-bromo-4-chloropentan-3-one

Cyclopenta-2,4-dien-1-one
7.

Butane-2,3-dione
8.

Hept-3-en-2,6-dione

IUPAC Naming of Polyfunctional Groups Subjective Problems

Write down the correct IUPAC name of given compound :

Nitro
carbamoyl
$\mathrm{NO}_{2} \mathrm{CONH}$.
Sol

3-carbamoyl-4-fluoro-2-methyl-5-nitrohex-5-enoylchloride

Write down the correct IUPAC name of given compound :

Sol

1-[4'-isocyanocyclohexene]methanenitrile

Write down the correct IUPAC name of given compound :

5-bromo-3-methoxy-2-methylhepta-3,5-dienamide

Write down the correct IUPAC name of given compound :

Write down the correct IUPAC name of given compound :

2-[2'-isocyanoethenyl]pent-2-en-4-ynenitrile

Write down the correct IUPAC name of given compound :

Sol ${ }_{3^{\prime}}^{\mathrm{Br}}$
2-[2'-bromo-1'-cyano-3'-fluorocycloprop-2-enyl] ethanamide

IUPAC Naming of Alcohol and Amine

Nomenclatue of Alcohol (R-OH)
Secondary suffix - 'ol'
Rule-1 :
Select longest carbon chain containing

1. Functional group
2. Multiple bond
3. Locant / substituent

Priority: (i) > (ii) > (iii)

Let's understand

IUPAC Naming of

1. Alcohol
2. Amine

Rule-2 :

While numbering, functional group is given more preference over multiple bonds.
Priority :
Functional group $>$ Multiple bond $>$ Substituents

0
1.

2.

3.

4.

5.

6.

7.

10.

11.

4-methylpentan-1-ol

4-methylpentan-2-ol
4.

5.

6.

7.

8.

9.

10.

11.

3,3-dimethylbutan-1-ol

5-bromocyclohex-2-en-1-ol

Ethan-1,2-diol

4,4-dimethylpent-2-en-1-ol

But-2-en-2-ol

4-cyclopropylpentan-2-ol

4-bromopentan-2-ol

Cyclohexa-2,5-dien-1-ol

Nomenclature of Amine [R - $\mathbf{N H}_{2}$]

2° suffix amine1. $\mathrm{CH}_{3}-\mathrm{NH}_{2}$
3. $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
5.
2.

4. $\mathrm{H}_{3} \mathrm{C}-\underset{\mathrm{C}}{\mathrm{N}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
6.

7.

8.

9.

10.

Sol

1. $\mathrm{CH}_{3}-\mathrm{NH}_{2}$

Methanamine

Butan-2-amine
3. $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

N -methylethanamine

N-ethyl-N-methylpropan-1-amine
5.

But-3-en-2-amine
6.

N -ethylbutan-2-amine
7.

N -ethyl-2-methylpropan-2-amine
8.

N -ethyl-N-methylbutan-2-amine
9. $-\left.\right|_{3} ^{1} 2 \mathrm{NH}_{2}$

2-methylpropan-2-amine
10.

Prop-2-en-1-amine
1.

3.

5.

7.

9.

1.

2.

3.

2.

6.

8.

10. $\mathrm{N} \equiv \mathrm{C}-\mathrm{CH}_{2}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{OH}$

3-chloro-5-cyano-4-oxoheptanoicacid

2-hydroxypropanoicacid

Ethyl-3-oxobutanoate
4.

5-hydroxycyclohex-2-en-1-one
5.

6-amino-5-carbamoylheptane-2-sulphonic acid
6.

4-methoxycarbonylbut-2-en-1-oic acid
7.

4-ethanoyloxybutanoic acid
8.

9.

10.

3-chloroformyl-2-methyl-4[N -methylamino]pentanoic acid
4-ethanoyloxy-2-methylbutanoic acid
55.

Subjective Problems

Write the IUPAC name of given compound :

3-amino-1-hydroxypent-3-en-2-one
$Q 2$
IUPAC name of given compound is a-bromo-b-chlorocyclohex-p-en-1,4-dione

Find $\mathbf{a}+\mathbf{b}+\mathbf{p}=$

5-bromo-2-chlorocyclohex-2-en-1,4-dione $a=5, b=2, p=2$
$\therefore a+b+p=5+2+2=9$

Write down the correct IUPAC name of following compounds :
(I)

(II)

(III)

Sol (I)

2-oxopropanal
(II)

3-ethyl-4-[N-methylamino]pentane

2-bromo-5-hydroxycyclohexa-2,5-dien-1-one

Identify the principle functional group according to IUPAC priority table for following given compound.
(I)

(II)

(III)

(IV)

Sol (I) Aldehyde
(III) Ketone
(II) Carboxylic acid
(IV) Alcohol

[^0]
Specific Rule and Aromatic Compound Naming

Introduction

Specific Rule of 1993

In an unbranched alkane 3 or more than 3 carbon containing functional group are attached then alkane is considered as parent carbon chain.

Sol

2. $\begin{array}{r}\mathrm{H}_{2} \stackrel{3}{\mathrm{C}}-\stackrel{2}{\mathrm{H}} \stackrel{+}{\mathrm{C}}-\stackrel{1}{\mathrm{C}} \mathrm{H}_{2} \\ \stackrel{1}{\mathrm{C}} \mathrm{C} \\ \mathrm{C} \\ \mathrm{C}\end{array}$
3.

propane-1,2,3-tricarbaldehyde
triethylpropane-1,2,3-tricarboxylate
5.

propane-1,2,3-triol

Point to remember
If carbon containing terminal functional group is present on cyclic ring then ring is considered as parent carbon chain and carbo word is introduced for that functional group.

Special Note

1. Aldehyde
2. Carboxylic acid
3. Acid Chloride
4. Amide
5. Cyanide
6. Ester
7. Carbaldehyde
8. Carboxylic acid
9. Carbonylchloride
10. Carboxamide
11. Carbonitrile
12. Carboxylate
13.

2.

7.

Sol 1.

5.

6.

cyclohexanecarbaldehyde
cyclohexanecarboxylic acid
cyclohexanecarbonylchloride
4.

5.

6.

NOMENCLATURE OF AROMATIC COMPOUND

1. Simple Naming

Rule-1 :

Rule-2 :

1-phenylethene
methylcyclohexanecarboxylate

2-cyclopentylethanal

cyclohexanecarboxamide
cyclohexanecarbonitrile

Point to remember
If pure alkane directly attached with benzene then consider benzene as parent chain and write as benzene only.

Point to remember

If attached group on benzene is not pure alkane then benzene will be considered as substituent and 2° prefix phenyl is used for it.

2.

3.

4.

5.

6.

Sol 1.

1-chloro-1-phenylbutane

Specific Rule and Aromatic Compound Naming
3.

1-phenylbut-2-ene
5.

1-chlorobenzene
2.

2-phenylethanol
4.

2-phenylethanal
6.

NOMENCLATURE OF AROMATIC COMPOUND

(Considered as parent carbon chain by IUPAC)

Aniline

Benzene carboxylic acid/ Benzoic acid

Benzene carbonitirile /
Benzonitrile

Benzne carbonyl chloride/
Toluene
Benzoyl chloride

1.

2.

Cles)
4.

5.

6.

Soll 1.

2, 4, 6-trinitrotoluene
or 1-methyl-2,4,6-trinitro benzene
63.
2.

3.

3-nitrophenol
5.

2-hydroxybenzoic acid

4-chlorotoluene or 1-chloro-4-methylbenzene
4.

4-nitrophenol
6.

Subjective Questions:

[^1]Sol 1.

ethyl-2-chlorocarbonylbenzene carboxylate
2.
 ethyl-3-aminobenzoate
3.
 3-chlorophenol
5.

1-phenylethanone
7.

4-phenylbut-3-en-2-one
9.

1,1-diphenylmethanone
4.

2-phenylethanenitrile
6.

1-phenylpropan-2-one
8.

4-phenylbutan-2-ol

2-bromo-4-hydroxybenzonitrile

1-nitrobenzene
13.

1,2-dichlorobenzene
15.

1,2-dimethylbenzene
12.

2-bromo-1-chloro-4-nitrobenzene
14.

2-ethylaniline
16.

3-ethoxybenzoylchloride
17.

benzene-1,2-diol
20.

Phthalic acid
benzene-1,2-
dicarboxylic acid
18.

19.

benzene-1,3-diol
21.

isophthalic acid
benzene-1,3-
dicarboxylic acid
benzene-1,4-diol
22.

Benzene-1,4dicarboxylic acid

Naming of Bicyclo Compounds

Naming of Bicyclo Compounds

- The prefix bicyclo is followed by the name of the alkane whose number of C atoms is equal to the number of C atoms in the two rings.
- The bracketed numbers show the number of C atoms (except bridge-head position C atoms) in each bridge and they are written in decreasing order.

Examples:
1.

Bicyclo[3.2.0]heptane
(i) Number of C atoms in ring $A=3$
(ii) Number of C atoms in ring $B=2$
(iii) Number of C atoms between bridge-head position = 0
2.

Bicyclo[2.2.2]octane
If substituents are present, number of the bridge-head proceeding first along the longest bridge-head (i.e., the larger right), then along the next longest bridge-head, and back to the first bridge-head. The shortest bridge is numbered last.

Example :

IUPAC name : 7-methylbicyclo[4.3.0]nonane
Numbering from the longest bridge-head (i.e., from the larger ring) to the next longest bridgehead (i.e., to the smaller ring).

Definition

Compound with two fused cycloalkane rings are called bicyclo compounds. They are cyclo alkanes having two or more atoms in common.

Point to remember
Out of the two bridge-head C atoms, start numbering from that bridge-head C atom from where the position of the substituent is lowest.

Wrong numbering since the position of the substituent is at C-9]

Correct numbering since the position of the substituent is at the lowest number, i.e. at C-7]

Example :

8-Methyl bicyclo [3.2.1] octane
Q Give the IUPAC names of the following compounds:
1.

2.

3.

4.

Bicylo [1.1.1] pentane
4.

3-bromo-6-methyl bicyclo [3.2.0] heptane

NAMING OF SPIRANES / SPIRO

- In substituted spiranes, the numbering is started next to the fused C atom in the lower-membered ring.

Example :

Spiro[3,4]octane

Example :

1.

Spiro[2,5]octane
2.

5-bromo-1-ethyl spiro[2,5]octane
3.

1-ethyl-4-methyl spiro[2,5]oct-5-ene

COMMON \& IUPAC NAMES OF SOME HALIDES

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}$

Common name : sec-butyl chloride IUPAC name : 2-chlorobutane
3. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$

Common name : tert-butyl bromide IUPAC name : 2-bromo-2-methyl propane
5. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$

Common name : Allyl bromide
IUPAC name : 2-bromoprop-1-ene
2. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Br}$

Common name : neo-pentyl bromide IUPAC name : 1-bromo-2,2-dimethyl propane
4. $\mathrm{CH}_{2}=\mathrm{CHCl}$

Common name : Vinyl chloride
IUPAC name : 1-chloroethene
6.

Common name : o-chlorotoluene IUPAC name : 1-chloro-2-methylbenzene or 2-chlorotoluene
8. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Common name: Methylene chloride IUPAC name : Dichloromethane

Common name : Benzyl chloride IUPAC name : chlorophenylmethane
9. CHCl_{3}

Common name : Chloroform IUPAC name : Trichloromethane
11. CCl_{4}

Common name : Carbon tetrachloride IUPAC name : Tetrachloromethane
13.

Common name : o-cresol IUPAC name : 2-methyl phenol
10. CHBr_{3}

Common name : Bromoform IUPAC name: Tribromomethane
12. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$

Common name : n-propyl fluoride IUPAC name : 1-fluoropropane
14.

Common name : m-cresol IUPAC name : 3-methyl phenol
15.

Common name : p-cresol IUPAC name : 4-methyl phenol

Alcohols

1. $\mathrm{CH}_{3}-\mathrm{OH}$

Common name : Methyl alcohol
IUPAC name : Methanol
3. $\mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}_{3}$

Common name : Isopropyl alcohol IUPAC name : Propan-2-ol
2. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

Common name : n-propyl alcohol IUPAC name: Propan-1-ol
4. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ Common name : n-butyl alcohol IUPAC name : Butan-1-ol
5. $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{OH}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Common name : sec-butyl alcohol IUPAC name : Butan-2-ol
7.

Common name : tert-butyl alcohol IUPAC name : 2-methyl propan-2-ol
6. $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{OH}$

Common name : Iso-butyl alcohol IUPAC name : 2-methyl propan-1-ol

Common name : Glycerol IUPAC name : Propane-1,2,3-triol
2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
Common name : Diethyl ether IUPAC name : Ethoxy ethane
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ Common name : Ethyl phenyl ether (phenetole)
IUPAC name : Ethoxy benzene
6.

Common name : Methyl isopropyl ether IUPAC name : 2-metoxy propane
8.

Common name: Catechol IUPAC name : Benzene-1,2-diol
11. Comene

Aldehydes

1. HCHO

Common name : Formaldehyde IUPAC name: Methanal
3.

Common name : 3-methyl cyclohexane IUPAC name : 3-methylcyclohexane carbaldehyde
2. $\mathrm{CH}_{3} \mathrm{CHO}$

Common name : Acetaldehyde IUPAC name : Ethanal
4. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$

Common name : Valeraldehyde IUPAC name : Pentanal
5. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$

Common name : Acrolein / Acrylaldehyde IUPAC name: Prop-2-enal
6.

Common name: Phthaldehyde IUPAC name :

Benzene-1,2-dicarbaldehyde
7.

Common name : m-bromo benzaldehyde IUPAC name: 3-bromo benzene carbaldehyde

Ketones

1. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Common name : Methyl n-propyl ketone IUPAC name : Pentan-2-one
2.

Common name : 2-methyl cyclo hexanone
IUPAC name : 2-methyl cyclohexanone
2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}\left(\mathrm{CH}_{3}\right)_{2}$ Common name : Diisopropyl ketone IUPAC name : 2,4-dimethylpentan-3one
4. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOCH}_{3}$ Common name : Mesityl oxide IUPAC name : 4-methylpent-3-en-2-one

Carboxylic Acids

1. HCOOH

Common name : Formic acid IUPAC name : Methanoic acid
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

Common name : Propionic acid
IUPAC name : Propanoic acid
5.

Common name : Phenylacetic acid IUPAC name : 2-phenyl ethanoic acid
2. $\mathrm{CH}_{3} \mathrm{COOH}$

Common name : Acetic acid IUPAC name : Ethanoic acid

4. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$

Common name : Isobutyric acid IUPAC name : 2-methyl propanoic acid
6.

Common name : Phthalic acid IUPAC name : Benzene-1,2-dicarboxylic acid
7. $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{COOH})-\mathrm{CH}_{2}-\mathrm{COOH}$ IUPAC name : Propane-1,2,3-tricarboxylic acid

Amines

1. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
Common name : Ethylamine
IUPAC name : Ethanamine
2. $\mathrm{CH}_{3}-\underset{\stackrel{c}{\mathrm{I}} \mathrm{H}}{\mathrm{N} \mathrm{H}_{2}}$

Common name: Iso-propyl amine IUPAC name : Propan-2-amine
2. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ Common name: n -propylamine IUPAC name : Propan-1-amine
4. $\mathrm{CH}_{3}-\underset{\mathrm{l}}{\mathrm{N}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Common name : Ethyl methyl amine IUPAC name : N -methylethanamine
5. $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{N}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$

Common name : Trimethylamine IUPAC name: N, N-dimethylmethanamine
7. $\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ Common name : Allylamine IUPAC name : Prop-2-en-1-amine
9.

Common name : Aniline IUPAC name : Aniline or benzenamine
6.

Common name: N, N-diethyl butylamine IUPAC name: N, N-diethyl butanamine
8. $\mathrm{NH}_{2}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}$ Common name: Hexamethylene diamine IUPAC name : Hexane-1,6-diamine
10.

Common name : p -bromo aniline IUPAC name : 4-bromobenzenamine or 4-bromo aniline
\qquad
\qquad

[^0]: Q Which of the following compounds have main functional group alcohol?
 (I)
 (II)

 (III)

 (IV)

 (V)

 Sol Priority: $\quad-\mathrm{COOH}>-\underset{\mathrm{Cl}}{\mathrm{C}}-\mathrm{H}>\underset{\mathrm{Cl}}{-\mathrm{Cl}} \underset{\mathrm{Cl}}{\mathrm{C}}->-\mathrm{OH}>-\mathrm{SH}>\mathrm{NH}_{2}$
 \therefore III, V have main functional group alcohol.

[^1]: 7.

 8.

 9.

 10.

 13.

 16.

 19.

 22.

 terephthalic acid
 14.

 17.

 18.

 21.

