Nomenclature of Organic Compounds

DISCLAIMER

"The content provided herein are created and owned by various authors and licensed to Sorting Hat Technologies Private Limited ("Company"). The Company disclaims all rights and liabilities in relation to the content. The author of the content shall be solely responsible towards, without limitation, any claims, liabilities, damages or suits which may arise with respect to the same."

Introduction of Organic Compounds

Why is an entire branch of chemistry devoted to the study of carbon containing compounds?

- We study organic chemistry because just about all of the molecules that make life possible—proteins, enzymes, vitamins, lipids, carbohydrates, and nucleic acids—contain carbon, so the chemical reactions that take place in living systems, including our own bodies, are organic reactions.
- Most of the compounds found in nature—those we rely on for food, medicine, clothing (cotton, wool, silk), and energy (natural gas, petroleum).

Berzelius Vital Force Theory

- According to vitalism, organic compounds were only those that came from living organisms, and only living things could synthesize organic compounds through intervention of a vital force.
- Inorganic compounds were considered those compounds that came from nonliving sources.
- Because chemists could not create life in the laboratory, they assumed they could not create compounds with a vital force. With this mind-set, you can imagine how surprised chemists were in 1828 when Friedrich Wohler produced urea—a compound known to be excreted by mammals by heating ammonium cyanate, an inorganic mineral.
- Failure of Berzelius vital theory and synthesis of first organic compound.

Introduction

Organic chemistry and you

- You are already a highly skilled organic chemist. As you read these words, your eyes are using an organic compound (retinal) to convert visible light into nerve impulses.
- When you picked up book, your muscles were doing chemical reactions on sugars to give you the energy you needed.

Definition

Old definitions of Organic Compounds

 Compounds which we can derive from living organisms (Plants & Animals) are called organic compounds

Compound	ls s	Source
----------	------	--------

- 1. Formic acid Ant
- 2. Sugar Sugarcane
- **ntroduction of Organic Compounds**

Specialized field of chemistry called organic chemistry, which derives its name from the fact that in the 19th century most of the them are known carbon compounds were considered to have originated in living organisms

Derivatives of Hydrocarbon

• If we replace one or more than Hydrogen from Hydrocarbon by an atom or group of atoms then compound formed is called derivative of Hydrocarbon.

$$C_2H_6 \xrightarrow{-H} C_2H_5OH$$

ethanol

Hydrocarbon

Hydrocarbon derivative

* Some Properties of Carbon Catenation :

- Due to catenation properties of carbon, it can form long bonded covalent structures. (Chain form)
- Carbon can form single, double or triple bond (covalent).

Eg.: Alkanes $\rightarrow C_n H_{2n+2}$ Alkenes $\rightarrow C_n H_{2n}$ Alkynes $\rightarrow C_n H_{2n-2}$

- Carbon in general shows valency 4.
 (ability to form bond with carbon or other atoms.)
- It is not necessary to show valency 4. It may be variable sometime.

Acetone is used in some nail polish removers

Definition

Modern Definition of Organic Compounds

- Hydrocarbon and their derivatives are called organic compounds.
- Compounds containing carbon and Hydrogen only are called Hydrocarbons.

Point to remember

 Some Compounds may appear as organic compounds but they are actually inorganic e.g., CO₂, NaHCO₃, H₂CO₃.

An RNA molecule

Types of Formula

1. Molecular formula :

Example :

- (i) Water \rightarrow H₂O
- (ii) Sulphuric Acid \rightarrow H₂SO₄

2. Empirical formula :

Example :

Molecular formula Empirical formula

- (i) Glucose $C_6H_{12}O_6$ $C_1H_2O_1$
- (ii) Propene C₃H₆ C_1H_2

3. Structural formula :

Example : H₂SO₄

(Structural Formula)

Representation of Organic Compounds *

Organic chemists use a variety of formats to write structural formulas

Dash formula

Condensed formula

Definition

Formula which represent actual number of atoms in a molecule.

Definition

Formula which represents the simplest ratio of atoms present in it.

Definition

Formula which shows connectivity between atoms and groups.

Definition

Dash structural formulas have lines that show bonding electron pairs, and include elemental symbols for all of the atoms in a molecule.

4.

6. Bond-Line Formulas :

Examples :

 $= \begin{array}{c} CH_{3} CH_{2} \\ CH CH_{3} = CH_{3}CH(CH_{3})CH_{2}CH_{3} \\ | CH_{3} \end{array}$

$$N = N = N = CH_3 CH_2 = (CH_3)_2 NCH_2 CH_3$$

Bond line notation :

Terminal points and bends represent C, all other valencies are filled by H. Hydrogen atom attach to carbon is not shown.

Examples :

Degree of Carbon :

Degree of a given carbon means number of carbon atoms directly attached to particular carbon atom has to be considered.

1° carbon \rightarrow Attached to 1C – also known as primary carbon

1°C

Definition

The most common type of structural formula used by organic chemists, and the fastest to draw, is the bond-line formula.

(Some chemists call these skeleton formulas.)

Note :

 If the compound has any hetroatom it will be shown any hydrogen atom attached with it will also be shown. 2° carbon → Attached to 2C – also known as secondary carbon 2°C

 3° carbon \rightarrow Tertiary carbon

4° carbon \rightarrow Quaternary carbon

$$CH_3$$

 $CH_3 + C_4 C_6$
 $CH_3 + C_4 C_6$
 CH_3

Degree of Hydrogen :

Similarly we define degree of H atom as the degree of carbon atom to which it is attached.

1° H \rightarrow Attached to 1° C

 $2^{\circ} H \rightarrow$ Attached to $2^{\circ} C$

 $3^{\circ} H \rightarrow Attached to 3^{\circ} C$

 $4^{\circ} H \rightarrow Not possible$

Example :

Degree of Alcohols :

Example :

S.No. (i)	$\begin{array}{c} \textbf{Compound} \\ \textbf{CH}_3 - \textbf{CH}_2 - \textbf{OH} \end{array}$	Degree of Alcohol 1° alcohol
(ii)	СН ₃ – СН – ОН I СН ₃	2° alcohol
(iii)	$CH_3 \\ I \\ CH_3 - C - OH \\ I \\ CH_3$	3° alcohol

Note :

- Alcohols are hydrocarbon that contains –OH (hydroxy) group.
- Degree of alcohol is degree of carbon atom to which –OH group is attached.

Functional Groups and Classification

Functional groups

Definition

Part of the molecules which are responsible for the characteristics chemical reactions of those molecules.

:=

TYPE OF FUNCTIONAL GROUPS			
$H_{2}C = CH_{2}$ $CH \equiv CH$	(Alkene) (Alkyne)	R-CH=N-R	(Imine)
R–OH R–SH R–O–R	(Alcohol) (Thio alcohol) (Ether)	II II R−C−O−C−R	(Anhydride)
R-S-R R-CH=O II R-C-R	(Thio ether) (Aldehyde) (Ketone)	ОН	(Phenol)
R–COOH R–SO₃H R–C≡N	(Carboxylic acid) (Sulphonic acid) (Cyanide)	NH ₂	(Aniline)
R–N≡C Q	(Isocyanide)	ОН	
R–C–OR O	(Ester)		(Naphthol)
II R–C–NH₂ O	(Amide)	R-NH ₂	(1º amine)
II R–C–X	(Acid halide)	R-NH-R	(2° amine)
R–N=O	(Nitroso)	R—N—R	(3° amine)
-N=N-	(Azo)	R	

Type of functional groups :

Point to remember

Due to difference in their properties 1°, 2°, 3° amine are treated as different functional groups but primary, secondary and tertiary alcohols are considered as same functional groups.

Number of different functional group present in given compound

Total 5

Homologous Series

Example-1

- CH₄
- $CH_3 CH_3$
- CH₃-CH₂-CH₃
- $CH_3 (CH_2)_2 CH_3$
- $CH_3 (CH_2)_3 CH_3$

Example-2

CH₃-OH Methanol CH₃-CH₂-OH Ethanol CH₃-CH₂-CH₂-OH of alcohol. Propanol $CH_3 - (CH_2)_2 - CH_2 - OH$ Butanol CH₃-(CH₂)₃-CH₂-OH Pentanol •

Methane

Ethane

Propane

Butane

Pentane

Let's understand

A homologous series is a series of compounds having same functional group (thus having same chemical properties) and consecutive members have a difference of molecular mass '14' or differ in molecular formula by $-(CH_2)$ – unit.

Homologous series of alkanes (also known as paraffins). Each consecutive member differ by $-CH_2 -$

Homologous series

Propanoic acid

Butanoic acid

Pentanoic acid

Calculation of number of $\,\sigma$ bond and π bonds in the compound

ċċ

-OH

σ bond :

Homologous series of carboxylic acid.

Introduction

The first bond formed by atom • is always σ bond. It is formed by axial overlapping. Single bonds are always σ bonds.

Introduction

- If two atoms forms more than • one bond between them except the first bond, rest all are $\boldsymbol{\pi}$ bonds. They are formed by sideways overlapping

Functional Groups and Classification

15.

Nomenclature

Mainly three systems are adopted for naming an organic compound

- (i) Common names or Trivial system
- (ii) Derived system
- (ii) IUPAC system or Jeneva system

Trivial System :

Introduction

Initially organic compounds are named on the basis of source from which they were obtained for Some typical compounds in which common and trivial names are also differ.

S. NO.	ORGANIC COMPOUND	TRIVIAL NAME	SOURCE
1	СН ₃ ОН	Wood spirit or Methyl spirit	Obtained by destructive distillation of wood
2	NH ₂ CONH ₂	Urea	Obtained from urine
3	CH4	Marsh gas (fire damp)	It was produced in marshy places
4	СН ₃ СООН	Vinegar	Obtained from Acetum –i.e. Vinegar
5	СООН СООН	Oxalic acid	Obtained from oxalis plant
6	нсоон	Formic acid	Obtained from formicus [Red ant]
7	Н ₃ С—СН—СООН ОН	Lactic acid	Obtained from sour mild
8	Н ₂ С—СООН СН(ОН)СООН	Malic acid	Obtained from apples
9	CH ₃ CH ₂ CH ₂ COOH	Butyric acid	Obtained from butter
10	CH ₃ (CH ₂) ₄ COOH	Caproic acid	Obtained from goats

S.NO.	ORGANIC COMPOUND	TRIVIAL NAME	SOURCE (COMMON NAME)
1	CH4	Marsh gas	Methane
2	СН ₃ ОН	Wood spirit	Methyl alcohol
3	СН ₃ СООН	Vinegar	Acetic acid
4	H ₃ C—C—CH ₃ O	Acetone	Dimethyl ketone

Derived System

• This system is reserved for the following nine homologous series.

Definition

• According to this system any compound is given name according to the parent name of the homologous series.

S. NO.	NAME OF HOMOLOGOUS SERIES	DERIVED NAME	STRUCTURE OF GROUP
1	Alkane	Methane	
2	Alkene	Ethylene	> C = C <
3	Alkyne	Acetylene	$- C \equiv C -$
4	Alkanol	Carbinol	— С— ОН
5	Alkanal	Acetaldehyde	о с—н

IUPAC system of Nomenclature

- International union of pure and applied chemistry.
- IUPAC system for naming is something that is very similar to addressing a person with his complete designation.

Definition

 According to IUPAC naming of organic compounds have some standard process may be called naming method in which anything about naming of molecule in a systematic way.

\Downarrow		\downarrow		\Downarrow
Dr	•	<u>Abdul</u>	Ka	lam
(Pre	fix)	Main name	Sur	name
Sy	stematic IUP	AC name follow	SPWPS	rule
S	Р	W	Р	S
Ų	\Downarrow	Ų	Ų	Ų
Secondary prefix	Primary prefix	Word root	Primary suffix	Secondary suffix

Secondary prefix

- It defines substituent & position of substituent.
- IUPAC considers following given groups as substituents :

1.	–R	\Rightarrow alky	rl	
	Examples :	-CH ₃	\Rightarrow	methyl
		-CH ₂ CH ₃	\Rightarrow	ethyl
		-CH ₂ CH ₂ CH ₃	\Rightarrow	propyl
		-CH,CH,CH,CH,	\Rightarrow	butyl
		-Ph	\Rightarrow	phenyl
2.	–OR	\Rightarrow alko	ху	
	Examples :	-OCH ₃	\Rightarrow	methoxy
		$-OC_2H_5$	\Rightarrow	ethoxy
		-OCH ₂ CH ₂ CH ₃	\Rightarrow	propoxy
		–OPh	\Rightarrow	phenoxy
3.	-X	\Rightarrow Halo	0	
	Examples :	-F	\Rightarrow	Fluoro
		-Cl	\Rightarrow	Chloro
		-Br	\Rightarrow	Bromo
		-1	\Rightarrow	Iodo
4.	-NO ₂	\Rightarrow Nitr	0	
5.	-NO	\Rightarrow Nitr	oso	
6.	-N ₃	\Rightarrow Azid	lo	

Primary prefix

- A primary prefix is used simply to distinguish cyclic from acyclic compounds.
- A primary prefix, cyclo is used immediately before the word root.
- It defines nature of parent carbon chain.
- Open chain (alicyclic) \Rightarrow
- Closed chain (cyclic) \Rightarrow Cyclo
- Bicyclic \Rightarrow Bicyclo
- Spirane \Rightarrow Spiro

Word Root

 It is the basic unit of the name. It denotes the number of carbon atoms present in the principal chain (the longest possible continuous chain of carbon atoms including the functional group and based upon the common names of alkanes) of the organic molecules.

According to number of carbon's in parent C-chain.

$C_1 \rightarrow meth$	$C_{_{11}} \rightarrow undec$
$C_2 \rightarrow eth$	$C12 \rightarrow dodec$
$C_{_3} \rightarrow prop$	$C_{_{13}} \rightarrow tridec$
$C_4 \rightarrow but$:
$\rm C_{_5} \rightarrow pent$:
$C_{_6} \rightarrow hex$	$C_{20} \rightarrow eicos$
$C_7 \rightarrow hept$:
$C_{_8} \rightarrow oct$:
$\rm C_{_9} \rightarrow non$:
$C_{_{10}} \rightarrow dec$	$\rm C_{_{100}} \rightarrow hect$

Primary Suffix

- A primary suffix is always added to the word root to indicate whether the carbon chain is saturated or unsaturated.
- The three basic primary suffixes are given below :

S.NO.	TYPE OF CARBON CHAIN	PRIMARY SUFFIX	GENERAL NAME
1	(a) Saturated	-ane	Alkane
2	(b) Unsaturated with one double bond	-ene	Alkene
3	(c) Unsaturated with one triple bond	-yne	Alkyne

Compound	2° prefix	1° prefix	Word	1° suffix	2° suffix	IUPAC
			root			name
CH ₃ CH ₂ CH ₃	-	-	prop	ane	_	Propane
$CH_3 - CH = CH_2$	-	—	prop	ene	—	Propene
$CH_3 - C \equiv CH$	-	-	prop	yne	—	Propyne
HC≡CH	-	-	eth	yne	-	Ethyne
	-	cyclo	but	ane	_	Cyclobutane
	-	cyclo	but	ene	_	Cyclobutene
\bigcirc	_	cyclo	oct	yne	_	Cyclooctyne

• If the parent carbon chain contain two, three or more double or triple bond, numerical prefix such as di (for two), tri (for three), tetra (for four) etc. are added to the primary suffix. For example.

S.NO.	TYPE OF CARBON CHAIN	PRIMARY SUFFIX	GENERAL NAME
1	(a) Unsaturated with one double bond	-diene	Alkadiene
2	(b) Unsaturated with one triple bond	-diyne	Alkadiyne

Secondary Suffix

• A secondary suffix is always added to the primary suffix to indicate the nature of the functional group present in the organic compounds. Secondary suffix of some important functional groups are given below :

S.NO.	CLASS OF ORGANIC COMPOUNDS	FUNCTIONAL GROUP	
1	Alcohols	-OH	
2	Aldehydes	-CHO	
3	Ketones	>C=0	
4	Carboxylic acids	-СООН	
5	Acid amides	-CONH ₂	
6	Acid chlorides	-COX	
7	Esters	-COOR	
8	Nitriles	-CN	
9	Thioalcohols	-SH	
10	Amines	-NH ₂	

Note :

• We will discuss secondary suffix in `detail after mono functional group naming.

Nomenclature of Alkane

Rule-1:

- Select the longest carbon chain containing maximum number of carbon and this longest carbon chain is also called parent carbon chain (PCC).
- Longest carbon chain not always straight. **Eg. :**

Rule-2:

• If two or more carbon chain contains same number of carbon then PCC is considered which has more number of substituents.

Eg. :

Substitutents

Rule-3:

• Numbering of parent carbon chain is done by lowest locant rule.

Lowest Locant Rule :

• According to this rule numbering is done in such a way so that substituent will get lowest number.

Eg.:

$$\begin{array}{c}
1 & 2 & 3 & 4 \checkmark \\
\hline C - C - C - C \\
4 & 13 & 2 & 1 \times \\
C \\
2-methyl butane
\end{array}$$

Nomenclature

Note:

In IUPAC naming numbers of substituent will be separated by (,) comma and number & alphabet is separated by ('-') hyphen.

Rule-4:

If two or more different substituents are present at parent carbon chain then numbering is done according to lowest locant rule while writing IUPAC name follow alphabetical order. Eg. :

Rule-5:

If two or more similar substituents are present on parent carbon chain then use di, tri, tetra etc. before 2° prefix while writing IUPAC name but di, tri, tetra, etc. are not considered alphabetically.

Rule-6:

If two or more substituents are present on parent carbon chain and they get same number from either side during numbering then numbering is done by alphabetical order.

> - C – C 2

1./

2-bromo-3-chlorobutane

* 3-ethyl-2-methyl hexane

3,4-dimethylhexane

8.

3-bromo-1-chloro-2-iodopentane

Nomenclature of cyclic alkane Rule :

- The cyclic structure or ring is considered as P.C.C. till the number of carbon in the ring is same or greater than number of carbon in chain.
- Rest all rules are similar as nomenclature of alkane.

Examples :

Nomenclature

Nomenclature of Alkene & Alkyne

Rule-1 : Parent carbon chain selection :

- Select the longest carbon chain containing maximum number of multiple bonds.
- If two chains having same number of multiple bonds then check maximum number of carbons to select parent carbon chain.
- If multiple bonds & carbon both are same then see maximum number of substituent to select parent carbon chain.
- Number of multiple bond > Number of carbon > Number of substituent (priority order)

EXAMPLE-1:	C = C $P.C.C.$ $C = C - C - C - C - C - C$ $C - C - C - C$
EXAMPLE-2:	C = C $C = C - C - C - C - C - C$ $C = C$
EXAMPLE-3 :	C = C - C - C = C

Rule-2 : Numbering of parent carbon chain :

- While doing numbering in alkene and alkyne minimum number should be given to multiple bond.
- If multiple bond getting same number from either side then give minimum number to substituent.
- For numbering multiple bond priority is high compare to substituent

Examples :

Rule-3:

If two or more similar multiple bonds are present on PCC then use di, tri, tetra etc. before 1° suffix and before this di, tri, tetra etc. 'a' should be written.

Examples :

Rule-4:

If in parent carbon chain alkene and alkyne both are present and they are getting same number from either side i.e. in between alkene and alkyne) then numbering is done from alkene side because alphabetically ene > yne.

- 3. 4-chlorobut-1-yne
- 5. 1-cyclopropyleth-1-ene
- 7. Hex-1-en-4yne

- 4. Buta-1,3-diyne
- 1-bromobut-1-yne 6.

Nomenclature of cyclic alkene

Rule:

All rules are similar to alkene & alkyne but during numbering 1 number is always given to alkene.

Nomenclature of Alkene & Alkyne

- **Sol 1.** 3,4-dimethylcyclobut-1-ene
 - 2. 1,4-dimethylcyclobut-1-ene
 - **3.** 1-bromo-2-chlorocyclobut-1-ene
 - 4. 3-bromo-6-chlorocyclohex-1-ene
 - **5.** 1-bromo-4-chlorocyclopenta-1,3-diene
 - 6. 6-bromo-3-ethyl-3-methylcyclohex-1-ene

Nomenclature of Complex Locant

Definition

Complex locant is defined as which consist of substituent in substituent.

S.NO.	COMPLEX LOCANT	COMMON NAME	IUPAC NAME
1	-c-c c	Iso propyl	1-methyl ethyl
2	-c-c-c c	Sec-butyl	1-methyl propyl
3	-c-c-c c	Iso-butyl	2-methyl propyl
4	-c-c-c-c c	Iso-pentyl	3-methyl butyl
5		Tert-butyl	1,1-dimethyl ethyl
6	c - c - c - c - c - c - c - c - c - c -	Neo pentyl	2,2-dimethyl propyl

NOTE :

- Complex locant are written in square brackets
 []
- In complex locant di, tri, tetra etc. should be considered in alphabetical order. iso, neo, sec. are also considered in alphabetic order.
- IUPAC name will be preferred over common name.
- If two similar complex locant are present then use bis, tris, tetrakis etc.

[di = bis, tri = tris, tetra = tetrakis]

Examples :

5-[1,1-dimethylethyl]undecane

4,5-bis [1,1-dimethylethyl]nonane

- Sol1. 5-[1-methylpropyl]nonane
 - **3.** 3-ethyl-2,2 dimethylhexane
 - 5. 1-[1-methylethyl]cyclohexane
 - 7. 1-ethyl-1-methylcyclohexane
 - 9. 1-[1-methylpropyl]cyclohexane
 - **10.** 1-[1-methylcyclopropyl]cyclohexane
 - **11.** 1-cyclopropyl-3[1-methylethyl]cyclohexane

2.

4.

6.

8.

(ii)

- **12.** 3-methyl-5-[1-methylethyl]-4-propyl-octane
- **13.** 2,2,3-trimethyl-6[1-methylethyl]nonane
- **14.** 2,2,3,7,8,8-hexamethylnonane

Substitutent Consist of Multiple Bond

- 1. If substituent having double bond :
 - 2° prefix / secondary prefix alkenyl

Examples :

(i)
$$-CH = CH_2$$
 ethenyl

(iii)
$$- CH_2 - CH = CH_2$$
 prop-2-enyl (iv)

- CH = CH - CH₃

3,4-diethyl-2-methylhexane

1-ethyl-3-methylcyclohexane

1-ethylcyclohexane

1-[1,1-dimethylethyl]cyclohexane

prop-1-enyl

4-ethenylhepta-1,6-diene

 If substituent having triple bond : 2° prefix alkynyl

Examples :

 If substituent attached to parent carbon chain by multiple bond : 2° prefix ⇒ alkylidene Nomenclature of Complex Locant

Examples :

Nomenclature of Complex Locant

35.

IUPAC Naming of Functional Groups

IUPAC Naming of Functional Groups

- 1. Carboxilic Acid
- 3. Acid Anhydride

1. Nomenclature of Carboxylic Acid

2° suffix oic acid

4. Ester

2,2,2-trichloroethanoic acid

2-[cyclohexa-1,3 dienyl]ethanoic acid

Nomenclature of Dicarboxylic Acid General molecular formula :

(CH₂)^{COOH} COOH

$\mathbf{N}\Rightarrow0$	1	2	3	4	5	6
0	М	S	G	А	Ρ	S
Oxalic acid	Malonic acid	Succinic acid	Glutaric acid	Adipic acid	Pimelic acid	Suberic acid

Common name : Oxalic acid IUPAC name : Ethane-1,2-dioic acid

3.
$$HO - \overset{1}{\overset{1}{\underset{II}{U}}} - \overset{2}{\overset{1}{\underset{C}{CH_2}}} - \overset{3}{\overset{1}{\underset{C}{CH_2}}} - \overset{4}{\overset{1}{\underset{C}{CH_2}}} - \overset{5}{\overset{1}{\underset{II}{C}}} - OH$$

Common name : Succinic acid ic acid IUPAC name : Butane-1,4-dioicacid

2.

4. $HO - \prod_{\substack{i \\ O}}^{1} - \prod_{\substack{i \\ O}}^{2} - \prod_{\substack{i \\ O}}^{3} - \prod_{\substack{i \\ O}}^{4} - \prod_{\substack{i \\ O}}^{5} - \prod_{\substack{i \\ O}}^{6} - \prod_{\substack{i \\ O}}^{7} - OH$

Common name : Pimelic acid IUPAC name : Hetpane-1,7-dioic acid

5.
$$HO - \overset{1}{C} - \overset{2}{C}H_2 - \overset{3}{C}H_2 - \overset{4}{C}H_2 - \overset{5}{C}H_2 - \overset{6}{C}H_2 - \overset{7}{C}H_2 - \overset{8}{C} - OH$$

Common name : Suberic acid IUPAC name : Octane-1,8-dioic acid

2. Nomenclature of Sulphonic Acid

2° suffix Sulphonic acid

But-3-ene-1-sulphonic acid

Pent-1-en-4-yne-3-sulphonic acid

3. Nomenclature of Anhydride 2° suffix oic anhydride

$$\begin{pmatrix} \mathsf{H}/\mathsf{R}-\mathsf{C}-\mathsf{O}-\mathsf{C}-\mathsf{R}/\mathsf{H}\\ \textbf{I} & \textbf{I}\\ \mathsf{O} & \mathsf{O} \end{pmatrix}$$

Examples :

1.
$$\begin{array}{c} CH_{3} - \overset{\bigcirc}{C} - \overset{\bigcirc}{O}H \\ CH_{3} - \overset{\bigcirc}{C} - \overset{\bigcirc}{O}H \\ H - \overset{\bigcirc}{C} - \overset{\bigcirc}{O}H \\ H - \overset{\bigcirc}{C} - \overset{\bigcirc}{O}H \\ H - \overset{\bigcirc}{C} - \overset{\bigcirc}{O}H \\ H_{3}C - \overset{O}{O}H \\ H$$

IUPAC Naming of Functional Groups

UPAC Naming of Functional Groups

40.

Methylmethanoate

[1-chloroethenyl]-2-bromobutanoate

 $CH_3 - C - O - U = 0$ 6. 2

Cyclopropylpentanoate

Pent-3-enylethanoate

2-bromo-1-methyleth-1-eyl-2chlorobutanoate

Priority List of Functional Group

S.NO.	FUNCTIONAL GROUP	2° PREFIX	2° SUFFIX
1	– СООН	carboxylic acid	oic acid
2	– SO ₃ H	sulpho	sulphonic acid

4	

3	- C - O - C - II II O O	-	oic anhydride
4	R– C – O – R II O	Alkanoyl oxy or alkoxy carbonyl	oate
5	R-C-X II O	halo formyl	oylhalide
6	R−C−NH₂ IJ O	carbamoyl	amide
7	– C N	cyano	nitrile
8	-N≓C	isocyano	isonitrile
9	-СНО	3 or 4	al
10	- C - 0	keto/oxo	one
11	-OH	hydroxy	ol
12	–SH	sulphonyl/ mercapto	thiol
13	-NH ₂	amino	amine
14	\searrow	ероху	-

IUPAC Naming of Functional Groups

IUPAC Naming of Functional Groups

Nomenclatue of Acid Halide

Let's understand

- 1. Acid Halide
- 2. Amide
- 3. Cyanide
- 4. Aldehyde

6.

5. Ketone

3.

7.

Ethanoylchloride

Prop-2-en-1-oylchloride

6. ³² ¹ ^{Cl}

Penta-2,4-dien-1-oylchloride

2-methylpropan-1-oylchloride

2,2-dimethylpropan-1-oylchloride

IUPAC Naming of Functional Groups

Nomenclature of Aldehyde

2° suffix al

IUPAC Naming of Functional Groups

Butane-2,3-dione

Hept-3-en-2,6-dione

IUPAC Naming of Polyfunctional Groups Subjective Problems

C≡N

1-[4'-isocyanocyclohexene]methanenitrile

 \mathbb{Q}^6 Write down the correct IUPAC name of given compound :

$$Br$$

 $CH_2 - C - NH_2$

Sol
$$Br$$

 CN CN $CH_2 - CH_2 - H_2$

IUPAC Naming of Alcohol and Amine

Nomenclatue of Alcohol (R-OH)

Secondary suffix – 'ol'

Rule-1:

Select longest carbon chain containing

- 1. Functional group
- 2. Multiple bond
- 3. Locant / substituent

Priority : (i) > (ii) > (iii)

Rule-2:

While numbering, functional group is given more preference over multiple bonds.

Priority :

Functional group>Multiple bond > Substituents

Let's understand

IUPAC Naming of

- 1. Alcohol
- 2. Amine

5-bromocyclohex-2-en-1-ol

Ethan-1,2-diol

4,4-dimethylpent-2-en-1-ol

But-2-en-2-ol

4-cyclopropylpentan-2-ol

4-bromopentan-2-ol

Cyclohexa-2,5-dien-1-ol

Nomenclature of Amine [R - NH₂]

2° suffix amine

54.

6-amino-5-carbamoylheptane-2-sulphonic acid

Subjective Problems

56.

... III, V have main functional group alcohol.

Specific Rule and Aromatic Compound Naming

Introduction

Specific Rule of 1993

In an unbranched alkane 3 or more than 3 carbon containing functional group are attached then alkane is considered as parent carbon chain.

- 4. Amide 5. Cyanide
- 6. Ester

- Carboxamide 4.
- 5. Carbonitrile
- 6. Carboxylate

terminal functional group is present on cyclic ring then ring is considered as parent carbon chain and carbo word is introduced for that functional group.

NOMENCLATURE OF AROMATIC COMPOUND

1. Simple Naming Rule-1:

Rule-2:

1-phenylethene

cyclohexanecarboxamide

cyclohexanecarbonitrile

methylcyclohexanecarboxylate

2-cyclopentylethanal

If pure alkane directly attached with benzene then consider benzene as parent chain and write as benzene only.

Point to remember

If attached group on benzene is not pure alkane then benzene will be considered as substituent and 2° prefix phenyl is used for it.

1-chlorobenzene

2-phenylpropanoic acid

NOMENCLATURE OF AROMATIC COMPOUND (Considered as parent carbon chain by IUPAC)

3-nitrophenol

6

5

6.

4-nitrophenol

соон

2

3

OH 4-hydroxybenzoic acid

2-hydroxybenzoic acid

Subjective Questions :

2-bromo-4-hydroxybenzonitrile

3

OH

2

Specific Rule and Aromatic Compound Naming

Naming of Bicyclo Compounds

Naming of Bicyclo Compounds

- The prefix bicyclo is followed by the name of the alkane whose number of C atoms is equal to the number of C atoms in the two rings.
- The bracketed numbers show the number of C atoms (except bridge-head position C atoms) in each bridge and they are written in decreasing order.

Examples :

Bicyclo[3.2.0]heptane
(i) Number of C atoms in ring A = 3
(ii) Number of C atoms in ring B = 2
(iii) Number of C atoms between bridge-head position = 0

Bicyclo[2.2.2]octane

If substituents are present, number of the bridge-head proceeding first along the longest bridge-head (i.e., the larger right), then along the next longest bridge-head, and back to the first bridge-head. The shortest bridge is numbered last.

Example :

IUPAC name : 7-methylbicyclo[4.3.0]nonane

Numbering from the longest bridge-head (i.e., from the larger ring) to the next longest bridge-head (i.e., to the smaller ring).

Definition

Compound with two fused cycloalkane rings are called bicyclo compounds. They are cyclo alkanes having two or more atoms in common.

:____

Point to remember

Out of the two bridge-head C atoms, start numbering from that bridge-head C atom from where the position of the substituent is lowest.

Wrong numbering since the position of the substituent is at C-9

Definition

only one C atom.

Spiranes are poly cyclics that share

NAMING OF SPIRANES / SPIRO

• In substituted spiranes, the numbering is started next to the fused C atom in the lower-membered ring.

Naming of Bicyclo Compounds

Example :

Spiro[3,4]octane

Example :

Spiro[2,5]octane

5-bromo-1-ethyl spiro[2,5]octane

1-ethyl-4-methyl spiro[2,5]oct-5-ene

COMMON & IUPAC NAMES OF SOME HALIDES

IUPAC name : chlorophenylmethane

2. (CH₃)₃CCH₂Br CH₃CH₂CH(Cl)CH₃ 1. Common name : neo-pentyl bromide Common name : sec-butyl chloride IUPAC name : 1-bromo-2,2-dimethyl IUPAC name : 2-chlorobutane propane (CH₃)₃CBr 4. $CH_2 = CHCl$ 3. Common name : tert-butyl bromide Common name : Vinyl chloride IUPAC name : 2-bromo-2-methyl propane IUPAC name : 1-chloroethene Cl $CH_2 = CHCH_2Br$ 5. 6. Common name : Allyl bromide CH₃ IUPAC name : 2-bromoprop-1-ene Common name : o-chlorotoluene IUPAC name : 1-chloro-2-methylbenzene or 2-chlorotoluene CH₂Cl 8. CH₂Cl₂ 7. Common name : Methylene chloride **IUPAC** name : Dichloromethane Common name : Benzyl chloride

Alcohols

CH₃-OH
Common name : Methyl alcohol
IUPAC name : Methanol
CH₃ - CH - CH₃
OH

Common name : Isopropyl alcohol IUPAC name : Propan-2-ol 2. CH₃-CH₂-CH₂-OH Common name : n-propyl alcohol IUPAC name : Propan-1-ol

4. $CH_3-CH_2-CH_2-CH_2-OH$ Common name : n-butyl alcohol IUPAC name : Butan-1-ol 5. $CH_3 - CH - CH_2 - CH_3$ OH Common name : sec-butyl alcohol

IUPAC name : Butan-2-ol

7.
$$CH_3 - CH_3$$

 $I - OH$
 $CH_3 - CH_3$

Common name : tert-butyl alcohol IUPAC name : 2-methyl propan-2-ol

Ethers

1. CH₃OCH₃ 2. $C_2H_5OC_2H_5$ Common name : Dimethyl ether Common name : Diethyl ether IUPAC name : Methoxy methane IUPAC name : Ethoxy ethane 3. $C_6H_5OCH_3$ 4. C₆H₅OCH₂CH₃ Common name : Methyl phenyl ether Common name : Ethyl phenyl ether (anisole) (phenetole) IUPAC name : Methoxyo benzene IUPAC name : Ethoxy benzene 6. $CH_3O - CH - CH_3$ I CH_3 5. $C_{e}H_{5}O(CH_{2})_{e}-CH_{3}$ Common name : Heptyl phenyl ether IUPAC name : 1-phenoxy heptane Common name : Methyl isopropyl ether IUPAC name : 2-metoxy propane OH 7. $C_6H_5-O-CH_2-CH_2-CH-CH_3$ I CH_3 OH 8. Common name : Phenyl isopentyl ether

IUPAC name : 3-methyl butoxy benzeneCc

Common name : Catechol IUPAC name : Benzene-1,2-diol

6. $CH_3 - CH - CH_2 - OH$ I CH_3

8. $\begin{array}{c} CH_2 - CH - CH_2\\ I & I\\ OH & OH & OH \end{array}$

Common name : Glycerol

IUPAC name : Propane-1,2,3-triol

Common name : Iso-butyl alcohol

IUPAC name : 2-methyl propan-1-ol

3. H₃C CHO

Common name : 3-methyl cyclohexane IUPAC name : 3-methylcyclohexane carbaldehyde 4. CH₃CH₂CH₂CH₂CHO Common name : Valeraldehyde IUPAC name : Pentanal

Ketones

1. CH ₃ COCH ₂ CH ₂ CH ₃ Common name : Methyl n-propyl ketone IUPAC name : Pentan-2-one	2. (CH ₃) ₂ CHCOCH(CH ₃) ₂ Common name : Diisopropyl ketone IUPAC name : 2,4-dimethylpentan-3- one
3. Common name : 2-methyl cyclo	4. (CH ₃) ₂ C = CHCOCH ₃
hexanone	Common name : Mesityl oxide
IUPAC name : 2-methyl cyclohexanone	IUPAC name : 4-methylpent-3-en-2-one

Carboxylic Acids

3. CH_3CH_2COOH Common name : Propionic acid IUPAC name : Propanoic acid 5. CH_2COOH Common name : Phenylacetic acid IUPAC name : Phenylacetic acid	1. HCOOH Common name : Formic acid IUPAC name : Methanoic acid	2. CH ₃ COOH Common name : Acetic acid IUPAC name : Ethanoic acid
5. \bigcirc CH ₂ COOH 5. \bigcirc CH ₂ COOH Common name : Phenylacetic acid IUPAC name : 2-phenyl ethanoic acid 7. HOOC-CH ₂ - CH(COOH) - CH ₂ -COOH IUPAC name : Propane-1,2,3-tricarboxylic	3. CH ₃ CH ₂ COOH Common name : Propionic acid IUPAC name : Propanoic acid	4. (CH ₃) ₂ CHCOOH Common name : Isobutyric acid IUPAC name : 2-methyl propanoic acid
7. HOOC–CH ₂ – CH(COOH) – CH ₂ –COOF IUPAC name : Propane-1,2,3-tricarboxylic	5. CH ₂ COOH Common name : Phenylacetic acid IUPAC name : 2-phenyl ethanoic acid	6. COOH Coommon name : Phthalic acid IUPAC name : Benzene-1,2-dicarboxylic acid
acid		7. HOOC-CH ₂ - CH(COOH) - CH ₂ -COOH IUPAC name : Propane-1,2,3-tricarboxylic acid

Amines

1. CH ₃ – CH ₂ – NH ₂	2. CH ₃ – CH ₂ – CH ₂ – NH ₂
Common name : Ethylamine	Common name : n-propylamine
IUPAC name : Ethanamine	IUPAC name : Propan-1-amine
3. CH ₃ – CH –CH ₃	4. $CH_3 - N - CH_2 - CH_3$
NH ₂	H
Common name : Iso-propyl amine	Common name : Ethyl methyl amine
IUPAC name : Propan-2-amine	IUPAC name : N-methylethanamine

