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RIGID BODY:-

Rigid body is classified as a system of particles
in which distance between each pair of particles
remains constant (with respect to time).
Remember, inflexible body is a mathematical
concept and any system which fulfills the
above condition is said to be rigid as long as it
fulfills it.

System behaves as a rigid body
Vi . 2
System behaves as a non-rigid body

Beads A & B are which move on a circular fixed
ring

Rotational Motion

Definitions

Rigid body is defined as a system
of particles in which distance
between each pair of particles
remains constant (with respect
to time).

A (D A Le o

A + B is rigid body system A + B is non-rigid body system

but A + B + ring is non-rigid system

If a system is rigid there is no change in the
distance between any pair of particles of the
system. It means shape and size of system
remains constant. Hence, we naturaly feel that
while a stone or cricket ball are rigid bodies, a
balloon or elastic string is non strick. But any of
the above method is rigid as long as comparative
distance does not change, whether itis a cricket
ball or a balloon. But at the instant when the bat
hits the cricket ball or if the balloon is pressed,
relative distance changes and now the system
acts like a non-rigid system.

Sr‘ Concept Reminder

A rigid body is one for which
the distances between different
particles of the body do not
change, even though there are

forces on them.
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Rotational Motion

For every pair of elements in a rigid body, there
is no velocity of departure or approach between
the particles. i.e., any comparative motion of a
point B on a rigid body with regard to another
point A on the rigid body will be at right angles to
line joining A to B, therefore with respect to any
particle A of a stiff body the motion of any other
particle B of that stiff body is rounded motion.

Let us assume velocities of A and B with respect

ground be v, and v respectively in the figure

below.

KEY POINTS \

Rigid body
Non-rigid body
Translational motion
Rotational motion

If the above bodly is rigid (stiff) v, cos 6, = v, cos 6,
(velocity of approach/separation is zero)

v, = relative velocity of B w.rt A

Vg, =V, Sin 0, + v, sin 0, (which is at right angles
to line AB)

B will be found to move in a circle to an observer

placed at A.

w.rt. any point of the stiff body the angular
velocity of all other points of the stiff body is
same.

Suppose A, B, C is a stiff system hence during any
motion sides AB, BC and CA must rotate through
the same angle. Therefore all the sides rotate by
the same rate.

r‘\i\ Concept Reminder

Types of motion of rigid body:
(a) Pure translational

(b) Pure rotational

(c) Combined translational and
rotational



From shape (i) angular velocity of A and B w.r.t.
Cis o,
From shape (ii) angular velocity of A and C w.r.t.

Biso

Types of Motion of rigid body

Pure Pure
Translational Rotational
Motion Motion

1. Pure Translational Motion:-

A body is said to be in real translational motion,
if the displacement of each element of the system
is same during any time interval. All through such
amotion, allthe particles have same displacement
(s), velocity (V) and acceleration (a).

think a system of n particle of mass m, m,, m,,
..... m_ undergoing pure translation. Then from
above definition of translational motion

Combined
Translational and
Rotational Motion

Definitions

A body is said to be in pure
translational motion, if the
displacement of each particle of
the system is same during any
time interval.

Rotational Motion



and vV, =

From newton’s laws for a system

—- —- -

Fext = m1;1 +Mm,az +mjas +.....
':_ext = M;.
Where M = total mass of the body

- -

P= m, Vi +m,Va + M, V3 + ...

P=Mv
Total kinetic energy of body
1
= —my? +—myV: +.... = =MV?

2. Pure Rotational Motion:-

Axis of rotation

Figure shows a stiff body of arbitrary shape in
rotation about a fixed axis, known as the axis of
rotation. Each points of the body moves in a
circle whose center lies on the axis of rotation,
and every point moves all through the same angle

f,\\ Concept Reminder

In pure translational motion all
the particles of the object have
same velocity at any instant of
time therefore, the object can
considered as a point object.

A motion in which every point
of the body moves in a circle
whose center lies on the axis of
rotation, and every point moves
through the same angle during
a particular time interval. Such
a motion is called pure rotation.

Definitions



during a particular time interval. Such a motion is
known as pure rotation.

We know that each element has same angular
velocity (since the body is rigid.)

So, v, =or, v, =or, \%

2 3

Total kinetic energy

1
= —myV; +—myVv, +
2 2

1
I
3
e
N
+
3
N
N o
+
e

= —lo

Where I=m,r? +m,r? +..... (is known as moment

of inertia)
o = angular speed of body.

3. Combined Translational and Rotational
Motion:-

A body is thought to be in combined translation
and rotational motion if all the point in body
rotates about an axis of rotation and axis of
rotation moves w.rt the ground. Any general
motion of the rigid body can be viewed as a
combined translational and rotational motion.

COMPARISION OF LINEAR MOTION AND
ROTATIONAL MOTION:
Linear Motion:
(i) If acceleration is 0, v = constant and s = vt
(ii) If acceleration a = constant, then
(u+v)
(@ s= 5

vV —-u

t

(b) a-=
(c) v=u+at
(d) s=ut+ [%] at?

(e) VvZ=u?+ 2as

sf‘ _ Concept Reminder

Kinetic energy in pure rotation

= lIo)2.
2

Definitions

A body is said to be in combined
translation and rotational
motion if all point in the body
rotates about an axis of rotation
and the axis of rotation moves
with respect to the ground.

KEY POINTS \

Moment of inertia
Axis of rotation

Rotational Motion



Rotational Motion

(iii)

a(2n-1)

() 5,0 =u+ 22

If acceleration is not constant, the above
equation will not be applicable. In this case

dx

a) v=—o

(@) v it
2
(b) a2 dv_dx
dt dt?

(c) vdv = ads

Rotational Motion:

0]
(ii)

(iii)

EXx.

If acceleration is 0, ® = constant and
O0=ot
If acceleration a = constant then

0, + O
@ o :—( ! 2)t

2

w, — O

(b) o = 2 - 1

© o,=o+at
d 6=ot +%at2

2 2
(e) o) =w;+200

(2n - Na

() 0 =0+

If acceleration is not constant, the above
equation will not be applicable. In this case

do

a =—

@ o It
2
(b) g do _d0
dt dt?

(c) odo=o0dd

A disc starts turning with constant angular
acceleration of 11/2 rad/s? about a fixed axis
perpendicular to its plane and through its

centre.

Sr‘ _ Concept Reminder

In linear motion:
If acceleration a = constant, then

_(u+v)
(a) s——2 t

vV-—u
t
(c)v=u+ at

(d) s=ut+ (%J aiic

(b) a =

(e) v = u? + 2as

(f) S . :u+m

Sr‘ ~ Concept Reminder

In rotational motion:
If acceleration o = constant then

_ (o, +o,)
(a) 9——2 t

_ 0, — o,
(b) a= :

) o, =w,+at

d) 0=wt+—at?
2

(e) cog = 0312 + 200

(F) 0, =0+ (2n - Do



Sol.

Ex.

Sol.

(@) Find out the angular velocity of the
disc after 4 s.

(b) Find out The angular displacement of
the disc after 4 s.

(c) Number of turns accomplished by the
disc in 4s.

Here o :g rad/ s?

0,=0
t=4s

@ oy :O+[g rad/sQJx4s: 2nrad/s

1
(b) Ous) = O+§(g rad/32]x(1632)

= 4n radian

(c) n2nrad-= %rad = 4x radian

n=2
Note: For variable angular acceleration we
should proceed with differential equation
do
P =a
A wheel rotates with an angular acceleration
given by o = 4at® — 3bt? where t is the time
and a and b are constants. If the wheel
has original angular speed o, write the
equations for the:
(a) Angular speed
(b) Angular displacement

do

(@) a=— =do=oadt
dt

= wa:jadt = j(4at3 - 3bt?)dt
@ 0 0

=  o=o,+at*-bt’

(b)  Further,

m:@:dezmdt
dt

Sr‘ _ Concept Reminder

In rotational motion, if angular
acceleration is not constant then:

do
al =
(@ o It

do d%0
b) 6=—=—
(b) T
(c) odo = add

Rotational Motion
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= j'de = j'codt = Jt'(coo +at? —bt?)dt
0 0 0

at®  bt?
t— -

= 0=o0
" 5 4

Ex. A rigid lamina is turning about an axis
passing perpendicular to its plane through
point O as shown in the figure.

o =10 rad/s

The angular velocity of point B w.r.t. Ais ?
Sol. In a rigid body, angular velocity of any point
w.rt. any other point is constant and is
equal to the angular velocity of the rigid
body. Therefore, angular velocity of B w.r.t A

is 10 rad/s.
MOMENT OF INERTIA:-
Definitions
axis
| The virtue by which a body
revolving about an axis opposes
P g the change in rotational motion
> L-F is known as moment of inertia.
_____________ -

The virtue by which a body rotating about an axis
opposes the change in rotational motion is called
moment of inertia.



The MOI of a body with respect to an axis of
rotation is equal to the product of mass of the
body and square of perpendicular distance from
rotational axis.

I =mr?

r = perpendicular distance from axis of rotation
Moment of inertia of system of particle

axis
N discrete
body
,,,,,,,,,,,,,,,,,,,,, 2
r, m,
g
F-
m2
_____________________ .
r3 m3

_ 2 2 2
I—m1r1 +m,ry M,y + .
| =>mr?

Moment of inertia depends on:-
(a) Mass of the block

(b) Mass distribution of block = its shape, size
and density

(c) Position of axis of rotation
Moment of inertia does not depend on-
(a) Angular velocity

(b) Angular acceleration
(c) Torque

(d) Angular momentum

UNIT: S.I.: kg-m?, C.G.S.: g-cm?

As the distance of mass rises from the rotational
axis, the moment of inertia (M.l.) increases.

MOI is a tensor quantity, but for fixed axis rotation
it can be considered as a scalar quantity.

S‘ ~ Concept Reminder

Moment of inertia of system of
particle:

axis
N P discrete
,,,,,,,,,,,,,,,,,, body
r, m,
.l
m2
_____________________ .
r3 m3
| = mr?

Sr‘ _ Concept Reminder

As the mass of body is the measure
of its inertia in linear motion, the
moment of inertia about a given
axis of rotation resists a change in
its rotational motion.

Rotational Motion
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Ex. Calculate moment of inertia w.r.t. rotating axis XX’ in following figures.

L d
1kg massless ro 4kg X
29em - 70em 1006m
Y
4@Tmm
%g(om
3kg ¢(0,-4)

Sol. (@) |I,.=4x(0.3)>+1x(0.8)> =1kg-m’
(b) Ly =4x(3° +2x(2)° +3x(4)> =99 kg -m’

Ex. Two thick bodies having masses 'm' & 'm,' are situated in a plane
perpendicular to line AB at a gap of r, and r, respectively.

c A
o
—rt——>

S I A
D B

(i) Find out the moment of inertia of the system about axis AB?

(ii) Find out the moment of inertia of the system about an axis
going through m, and
perpendicular to the line joining m, and m, ?

(iii) Find out s the moment of inertia of the system about an axis
passing through m and m,?

Sol. (i) Moment of inertia of body on leftis |, = mr2
Moment of Inertia of body on right is I, = m,r,?
MOI of the system about AB is given as | = | +1,=mr?+ m,r’
(i)  Moment of inertia of body on left is I, = 0. Moment of Inertia of

the system about CD is given as
I=1+1,=myr +r)
(iii) MOl of body on left is I, = 0 Moment of inertia of body on right is
I, = 0 Moment of Inertia of system about EF is
I=1+1,=0+0

10.



Ex. Three light rods, each rod of length 2¢, are joined entered to form a
triangle. Three small particles A, B, C of masses m, 2m, 3m are attached
to the vertices of the triangle. Find out the MOI of the resulting body
about-

(@) An axis through A at right angles to the plane ABC
(b) An axis going through A and the midpoint of BC.
Sol. (a) B is atafar away 2¢ from the axis XY so the moment of inertia of
'B' (1,) about XY is 2 m (2¢)?
likewise I_about XY is 3m (2£)? and I, about XY is m(0)>

Therefore the MOI of the body about XY is 2m (2£)? + 3 m(2¥)? +
m(0)? = 20 ml?
(b) 1, about X’ Y’ = m(0)?
I, about X’ Y’ = 2m (£)>
I about X’ Y’ = 3m (£)?
Therefore the MOI of the body about X’ Y’ is given as
m(0)2 + 2m(¥)? + 3m(¥)? = 5 ml?

Xl
Agm

/N

L\

2Zm ¢— —*<¢— —» 3m

YI

Ex. Four particles each of mass 'm' are kept at the four corners of a
square of edge a. Find out the moment of inertia of system about a
line perpendicular to the plane of square and passing through the
centre of the square.

Sol. The perpendicular distance of each particles from the given line is
a

{2

. The MOI of one particle is,

Rotational Motion
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2
Therefore, m{ij :lma2

J2 2

The MOI of the system is,

Therefore, 4 x %ma2 =2ma?

m m
@:
,b\
. ®
m m

MOMENT OF INERTIA OF RIGID BODIES:-
For a continuous mass distribution such as
observedinarigid body, we replace the summation

of I=Zmi rf by an integral. If the system is

divided into minuscule element of mass dm and
if 'r' is the distance from the mass element to the
axis of rotation, the moment of inertia is,

| = Ierm

Where the integral is carried over the system.
(A) Uniform rod about a perpendicular bisector:-
Assume a uniform rod of mass 'M' and
length | (figure) and assume the moment
of inertia is to be determined about the
bisector AB. Take up the origin at the middle
point O of the rod. think about the element
of the rod between a seperate x and x + dx from
the origin. As the rod is uniform.

s!" _ Concept Reminder

For a continuous mass distribution
such as found in a rigid body.

| = Ir2dm

Rack your Brain ﬂ

A light rod of length | has two
masses m, and m, attached to
its two ends. Find the moment
of inertia of the system about
an axis perpendicular to rod and
passing through the centre of
mass.

12.



Mass per unit length of the rod = M/l
So that the mass of the element = (M/l)dx
The perpendicular seperation of the element
from the line AB is x. The moment of inertia of
this particle about AB is

di = %dx x2
When x = — /2, the particle is at the left side of
the rod. As x is changes from - /2 to l/2, the

particles cover the whole rod.
Thus, the MOI of the entire rod about AB is

L/2 3 t/2 2
M M ML
I——j—x2dx_—[ X:l =

2, L 13 12

(b) MOI of arectangular plate about a line parallel
to an edge and passing through the centre:-

The situation is shown in diagram. take a line
parallel to AB at a distance 'x' from it and one
more at a distance x + dx. We can get the strip
enclosed between the two lines as the small
element.

It is ‘small’ because the perpendiculars from
different points of the strip to 'AB' differ by not
more than dx. As the rectangular plate is uniform,

. ..M
Its mass per unit area is H

s(" . Concept Reminder

The moment of inertia of the
entire rod about AB is.

A

| x_dx,
I:O:D:I
B
M
12

s(" Concept Reminder

Moment of inertia of a rectangular
plate about a line parallel to an
edge and passing through the
centre:

|
AB 12

13.
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Mass of the strip is %bdx = %dx

The perpendicular sepration of the strip from
AB line = x.

The MOI of the strip about AB = dI = %dx x?. The

MOI of the given plate is, therefore,

12 2
ML

| = J- %xQ dx = —
-2 12

The MOI of the plate about the line parallel to the
other edge and going through the centre may be
obtained from above formula by replacing | by b
and therefore,

_ Mb?
12

(c) MOI of a circular ring about its axis (the line
perpendicular to the plane of the ring through its
centre):

Assume the radius of the ring is R and its mass is
M. As all the particles of the ring are at the same
perpendicular distance R from the axis, the MOI
of the ring is

|=J'r2dm=jR2dm=R?jdm=|v|R2

(d) MOI of a uniform circular plate about its axis:
Assume the mass of the plate be M and its
radii R. The centre is at O and the axis-OX is
perpendicular to the plane of the plate.

L

S

X

s!" _ Concept Reminder

Moment of inertia of a circular
ring about its axis (the line
perpendicular to the plane of the
ring through its centre):

| = MR?

Sr‘ ~ Concept Reminder

Moment of inertia of a uniform
circular plate about its axis:
_ MR?

2

14.



Take two concentric circles of radii x and x + dx,
both centred at O and think about the area of the
plate in between the two circles.

This part of the plate may be thought to be a
circular ring of radii x. As the periphery of the
ring is "2nx' and its width is 'dx!, the area of this
elementary ring is 21 xdx. The area of the plate is
nR2. As the plate is uniform,

. M
Its mass per unit area = —
R

2 Mxdx
Mass of the ring = l271 x Xdx =
nR? R?

Using the result achived above for a circular ring,
the MOI of the elementary ring about OX is,

di— {2 dex}(2
R2

The MOI of the plate about OX is
R2M MR?

—X —
0 R2

3dx

(e) Moment of inertia (MOI) of a hollow cylinder

about its axis:-

Assume the radius of the cylinder is R and its
mass is M. As each element of this cylinder is at
same perpendicular distance 'R' from the axis,
the MOI of the hollow cylinder about its axis is,

|=jr2dm=R2Idm=|v|R2

(f) MOl of a uniform solid cylinder about its
axis:-

Assume the mass of the cylinder be M and its
radius R. Draw two cylindrical surface of radii 'x'
and x + dx coaxial with the given cylinder. Think
about the part of the cylinder in between the two
plane. This part of the cylinder may be believed to
be a hollow cylinder of radii x. The cross-section

5(.‘ _ Concept Reminder
Moment of inertia of a hollow
cylinder about its axis:

| = MR?

s(" _ Concept Reminder
Moment of inertia of a uniform
solid cylinder about its axis:
_ MR?
2

15.
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area of the wall of this hollow cylinder is 2nxdx.
If the length of the cylinder is 'l, the volume of
the material of this elementary hollow cylinder is
2nxdxl.

The volume of the solid cylinder is nR?l and it is
uniform, hence its mass per unit volume is

LM
R4

The hollow cylinder mass considered is

M 2n xdxl = 2—dex
R R2

As its radius is x, its MOI about the given axis is

The MOI of the solid cylinder is, therefore,

R
2M 2
I:J-—xsdx: MR
0 R2 2

Note: that the formula does independent on the
length of the cylinder.

Note:- The moment of Inertia of a cuboid along
M(a? + b?)

the axis as shown in the figure is | = n

16.
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Ex. MOI of a rod about an axis passing through
its end and perpendicular to length. If the
rod mass is M & mass of element is dm.

v

L
el
L| 3 3
0

Ex. MOI of a rod about an axis inclined at an
angle 6 with the rod & passing through one
end.




Rotational Motion

Sol. r=xsin®
o M
So, | = Ierm = JXQ sin® 6 —dx
° L

L

M., | X° ML? sin? 0
= —sin 0| —| =———
L 3 3

0

THEOREMS OF MOMENT OF INERTIA

Theorem of perpendicular axes (applicable only
for two dimensional bodies or plane laminas): -
MOl of a plane lamina about the axis perpendicular
to its plane is equal to the sum of moments
of inertia of lamina about any two mutually
perpendicular axes in its own plane intersecting
each other at point through which perpendicular
axis passes.

=1+
Where,
I = Ml of the body about X-axis
I, = Ml of the body about Y-axis
|, = Ml of the body about Z-axis
=1, +1, (X -Y Plane)
I, + 1, (Y -ZPlane)
=1, +1, (X - Z Plane)

IZ
IX
IY

Note: Applicable only for two dimensional bodies
and cannot be used for three dimensional
bodies.

Definitions

The moment of inertia of a
plane lamina about an axis
perpendicular to its plane
is equal to the sum of the
moments of inertia of the
lamina about any two mutually
perpendicular axes in its own
plane intersecting each other
at the point through which the
perpendicular axis passes.

5?‘ . Concept Reminder

Theorem of perpendicular axes is
applicable only for two dimensional
bodies or plane laminas.



Theorem of parallel axes (for all type of bodies):
MOl of a body about any axis is equal to the
moment of inertia about a parallel axis passing
through the centre of mass plus product of mass
of the body and the square of perpendicular
distance between these two parallel axes.

2
| = lgyy +Md

I,y = MOI about the axis passing through centre
of mass applicable for bodies of any type and

shape.

Ex. Find the MOI of a uniform rectangular plate
of mass M, edges of length ‘I’ and ‘b’ about
its axis passing through the centre and
perpendicular to it.

Sol. Using perpendicular axis theorem I, =1 + |,

_Mp® M2 I_M(€2+b2)

|
o272 127 3% 12

r@\ Concept Reminder

Definitions

Theorem of parallel axes (for all
type of bodies):
Moment of inertia ofabbody about
any axis is equal to the moment
of inertia about a parallel axis
passing through the centre of
mass plus product of mass
of the body and the square of
perpendicular distance between
these two parallel axes.

S‘\\ Concept Reminder

AN
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Ex. Find the relation between |, and I,. | and I,
moment of inertia of the rigid body mass 'm'
about an axis as shown in figure.

Sol. Using parallel axis theorem
l, =1+ ma? ..(i)
l, =1+ mb? ..(ii)
From equation (i) and (ii)
l, =1, =m(> - b?)

MOI about the diameter of the ring: -
Assume moment of inertia of the ring about each

| ol
Z

diameter = |, (i.e., XX’ and YY’). Both diameters
are perpendicular to the axis ZZ’ which is passing
through centre of ring and perpendicular to its
plane, by theorem of perpendicular axes.

Lo + 1= 1,
or l,+1,=1
= 21, = MR’

1
= |, ==MR?
2

Rack your Brain a

Four identical thin rods each
of mass M and length |, from a
square frame. Find out moment
of inertia of this frame about an
axis through the centre of square
and perpendicular to its plane.

S‘\ Concept Reminder

\

MOI about the diameter of the

ring:
[l
z y
X X
Id
v
I, .
- MR?
a2

20.



MOI about an axis tangential and parallel to the
diameter of the ring: -

Assume moment of inertia of the ring about the
tangent AB parallel to the diameter YY’ of the

ring = |,

Applying theorem of parallel axes
I, = moment of inertia of ring about diameter YY’

+ Md? (here d = R)

I, - 1MR? + MR?
2

3
= |, ==MR?
2

MOI about the tangent parallel to the axis passing
through the centre of ring and perpendicular to
its plane:

\:JI A
|«

Let M.I. of the ring about tangent (AB)

parallel to an axis passing through centre of the
ring and perpendicular to its plane = I,

Applying theorem of parallel axes

s(" Concept Reminder

v -

MOI about an axis tangential and
parallel to the diameter of the
ring:

S?‘ .. Concept Reminder

o

MOI about the tangent parallel
to the axis passing through the
centre of ring and perpendicular
to its plane:

N A
|l =

' 2
', = 2MR

21.
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I, = moment of inertia about ZzZ’ + MR?2 = MR? + MR?

I, = 2MR?

So, by using integration, we can find MOI of some more regular bodies. Here we memorize

only the formulas.

(a) About an axis
perpendicular to the plane
and passes through the
centre

(b) About the diametric
axis

(c) About an axis tangential
to the rim and
perpendicular to the plane
of the ring

(d) About an axis tangential
to the rim and lying in the
n ring

(a) About an axis passing
through the centre and
perpendicular to the plane
of disc

(b) About a diametric axis

(c) About an axis tangential
to the rim and lying in the
plane of the disc

(d) About an axis tan,
to dicular

gential

& " g

A
Z

MR?

MR

2MR?

Zmre

JMR

S MR:

Sure

22,



(a) About an axis passing
through the centre and
perpendicular to the plane
of disc

(b) About a diameteric axis

(a) About its diametric axis
which passes through its
centre of mass

(b) About a tangent to the
Sphere

(a) About diametric axis
passing through centre of
mass

(b) About a tangent to the
surface

table tennis ball

=15

table tennis ball

YR+ R

Mirz+ry

2
5 MR?

I
5 MR?

-%-MRﬁ

S MRe

23.

Rotational Motion



Rotational Motion

(a) About its geometrical
axis which is parallel to its
length

(b) About an axis which is
perpendicular to its length
and passes through its
centre of mass

(c) About an axis
perpendicular to its length
and passing through one
end of the cylinder

(a) About its geometrical
axis, which is along
its length

(b) About an axis tangential
to the cylinderical surface
and parallel to its
geometrical axis

(c) About an axis passing
through the centre of
mass and perpendicular
to its length

24,



(a) About an axis passing
through centre of mass and
perpendicular to its length

(b) About an axis passing
through one end and
perpendicular to length
of the rod

(a) About an axis passing
through centre of mass and
perpendicular to side b in
its plane

(b) About an axis passing
through centre of mass and
perpendicular to side a in
its plane.

(c) About an axis passing
throught centre of mass
and perpendicular to plane

About an axis passes
through centre of mass
and perpendicular to face

v

<
(o

=
=

M(a? + b?)

12

25.
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Ex. Find out moment of inertia of a uniform sphere of mass m and radius
R about a tangent if the spheres:
(i) Solid (ii) Hollow

Sol. Using parallel axis theorem
I =1, + md?

Solid sphere Hollow sphere

For solid sphere
2

I, =—=mR?, d=R
CcM 5
1= L mR?
5
(i)  Using parallel axis theorem
I =1, + md?
For hollow sphere
2 o
l.,, =—mMR", d=R
CcM 3
| = 2mR?
3

Ex. Find out moment of inertia of a rectangular frame formed by uniform
rods having mass 'm' each as shown about an axis passing through its
centre and perpendicular to plane of frame? Also find out moment of
inertia about an axis passing through PQ?

.. m 1 R
P =4Q
® b,m
s R

Sol. MOI about an axis passing through its centre and perpendicular to the
plane of frame
=L+ +1,+1,




L=1,1,=1,

=21 +21,

m¢? b’ mb? A%
l, = +m|—|, I,= +m| —
12 2 12 2

2m 5 2
SO, IC:T(E +b)

M.l. about axis PQ of the rod PQ I, = 0
M.l. about axis PQ of the rod PS

L mb?
23

M.l. about axis PQ of the rod QR
- mb?
3

M.l. about axis PQ of the rod SR
I, = mb?

5mb?

I=1+1,+1;+1, =

Ex. Two similar rods are arranged in given manner. Find L, I, |, |

1?2 13 g
(M’-I-_—)*@--
a0
/‘CI"‘ 2l
L'e ",
@ ol
(M,L) @
M2 ML?
Sol. =1 ,+l,= n 3
_s5MmL
12
M2 ML?
L=l +k,=0 - + 7
, ML?
ly =l +k, =0+ML" + 3

27.




_4MB

3 3
ML2 ML2 ML2 2ML2 3MmLP
l, = + + = +
12 4 12 12 12
_5MB
492

Ex. For given arrangement, Find M.l. about I, and |,.

ML2 2ML2
X2 =
3 3
2ML? , 5ML?
= + ML =

|
2 3 3

Ex. Two similar solid sphere touch each other. Find M.I. about I,?

SoLI2=(3MR2+MR1x2
5

7MR? 14 MR?
= X2:
5 5

Ex. Two rings having the same radius and mass are placed such that their centres are at
a common point and their planes are at 90° to each other. Find out moment of inertia
of the system about an axis passing through the centre and perpendicular to the plane
of one of the rings. (M = mass of each ring and R = radius).

28.




Sol. Similar co-centric rings, MOI passing through common centre is

_ MR?

| + MR?

|_ 3MR® 0
2

|
Ex. A wire of mass m and length lis bent into a shape of circular loop then its MOl about

geometrical axis will be.

/
Sol. 2nr=/¢, r =—
21

2

l=mr2 = | _ M¢

41?2

Ex. A disc of radius ‘r’ is made from an iron plate of thickness ‘t’. Another disc B of radius
‘2r’ is made from the same material of thickness t/2. Then find ratio of MOI (density is
same)

Sol. p=

2r, M,

29.




Ex. A segment of disc having mass M and radius R is given then find its

MOI about the axis shown in figure.

R

Sol. For a complete disc — mass = 4M

. 4MR?
MOI for new disc = 5
4MR? 1
For one segment = 5 X "

2
One segment =

Ex. Find MOI for given figure.
M,L

\—;Ring

Sol. For complete ring — mass = 6M

MOI for one segment = 6MR2%

0= % (one segment = MR?)

6OXL:£

180 R

3L omL?
R=—, | =

T n2

Ex. Find MOI for given figure.

30.



Sol. M.l. of Complete square = 2|

2M(L?) ML
= - I =
12 12

21

Ex. A hole of radii R/2 is cut from a thin circular plate of radii R and mass
M as shown in the diagram. Then find out MOI of the plate about an
axis through O perpendicular to plane.

SOI.. Iremaining = Icomplete - Iremoved abOUt same axis
MR? [ mr? )
= — + mr
2 2
_ MR?> 3 2
2 2

ot

_ MR? 3MR®* 13MR?

2 32 32
Note:- nr2 > M
M
1> —2
r
RY M R
T — —> X
2 TCR2 4
M
m=—
4

31.




Ex. A hole of radii R/2 is cut from a solid sphere of radius R and mass M as shown in the

figure. Then find moment of inertia of the sphere about an axis passing through centre
and perpendicular to plane.

M,R
S.S.(Solid Sphere)

M,R

4 R
Sol. —nR® M, r=—
3 2

Ex. Two rods each having length 'l' and mass 'm' joined together at point B as shown in

diagram. Then find out moment of inertia about axis passing through A and perpendicular
to the plane of page as shown in diagram.

L A
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Sol. We find the resultant MOI | by dividing in two parts such as
| = MOI of rod AB about A +M.I of rod BC about A
=1 +1, ()
Calculation of I,

m¢? ..

= ..(ii

1= 3 (i)
Calculation of I,

/2
COM

Use parallel axis theorem
I, =1, + md?

2 2 2 5(2
LA LS - 3 I UL L ..(iii)
12 4

Put value from eq. (ii) & (iii) into (i)
m¢*  50°m

+
3 12 4

5m/?

2
M (441415) = 1=
12

Ex. A uniform disc having radii 2R and mass density o as shown in figure. If a small disc of
radii R is cut from the disc as shown. Then find the MOI of remaining disc around the
axis that passes through O and is perpendicular to the plane of the page.
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Sol. We assume that in remaining part a disc of radii R and mass density + ¢ is placed. Then

M, = on(2R)?

M. = -onR?

+

2

When -c is taken

When +c is taken

Total Moment of Inertia | = |, + I,
- M,(2R)
! 2
om4R? - 4R? .
| =—————=8noR

To determine I, we use parallel axis theorem
I, =1, + M,R?

2
_ MR

l, =

2
+ M2R

3

==
2 2

M,R? = %(—cnRz)Rz

3 4
I2 =——onR

Now | = I1 +1,
| = 8 toR? —%cmR4

13

4
| =—omnR

Ex. A uniform disc of radii R has a round disc of radii R/3 cut as shown in Fig. The mass of
the remaining portion (shaded) of the disc equals M. Find out the MOI of such a disc
relative to the axis going through geometrical centre of original disc and at right angles
to the plane of the disc.
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Sol. Assume the mass per unit area of the
material of disc be 6. Now the empty space
can be belived as having density —c and o.
Now I = ls + |

3 (omR?)R?

I = Ml of ¢ about O

= MI| of —c about O

lo = gcnRA'
RADIUS OF GYRATION (K)

The radius of gyration of a body is the distance
from axis of rotation, the square of this distance
when multiplied by the mass of body then it gives
the moment of inertia of the body (I = MK?) about

same axis of rotation. E

Definitions
A axis

The radius of gyration of a
body is the distance from axis
of rotation, the square of this
distance when multiplied by the
mass of body then it gives the
moment of inertia of the body
(I = MK?») about same axis of
rotation.
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Rotational Motion

l=MK?> = |=Zmr2
MK? =Z:mr2

2 2
oM AMy G e M
M

K2

2 2 2

r2 402 4o +r
K=\/1 2 n (n = total number of
particles)

Radius of gyration K = \/g

(K has no sense without axis of rotation and K is
scalar quantity)

Radius of gyration depends on

(i) Axis of rotation
(ii) Distribution of mass of body

Radius of gyration does not depend on

(i) Mass of the body

(ii) Angular quantities (angular displacement,
angular velocity etc.)

Symmetrical separation

(s

« >

M = Mass of disc
R = Radius of disc

¥ . Concept Reminder

axis

o

axis

| = MK?

Rack your Brain ﬂ

Find the ratio of the radii of
gyration of a circular disc about
a tangential axis in the plane
of disc and of circular ring of
same radius and mass about a
tangential axis in the plane of
ring.

36.



If % part is separated.

Remaining mass = %M =M’

MI of remaining part I' = %I

Radius of gyration of remaining part

3

|
4 _ Lk = kremains unchanged.
3M M
4

37.




Rotational Motion

Unsymmetrical attachment:

| 2
K — /+mr
M+m

Ex. Find out the radius of gyration of a solid
uniform sphere of radius R about its tangent.

Sol. IzémR2 +mR? :%mR2 =mK?

= K=\/ER
5

Ex. Find out the radius of gyration of a hollow
uniform sphere of radius R about its tangent.

Sol. mK? = \/EmRZ
3
KzﬁR
3

TORQUE

It is the physical agency which is responsible for
change in state of rotation. Torque is essential for
producing turning / toppling phenomena.

For producing torque the force is required and it
is product of force and perpendicular distance of
line of action of force (liver arm from axis).

¥ . Concept Reminder

KEY POINTS \

Radius of gyration
Torque

Toppling

Liver arm

Definitions

It is the physical agency which is
responsible for change in state
of rotation. Torque is essential
for producing turning / toppling
phenomena.
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7_&} Line of action
“of force
B

~ 90°

In figure OB is the perpendicular distance of line
of action from axis which is r sin 0.
So,t = Frsin 0

Vector form, T=rxF

Where F = force applied
r = position vector of the application point of
force w.rt the point about which we want to

determine the torque.
It is an axial vector, i.e. Its direction is always

perpendicular to the plane containing vector r

and F.
Its direction is determined by right hand screw

rule.

Positive sign to all torques acting to turn a body
anti-clockwise and a minus to all torques tending
to turn it clockwise.

sf\‘\ Concept Reminder

r = position vector of the point of
application of force w.r.t the point
about which we want to determine

the torque.

39.
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Rotational Motion

) /eg, Mg

Although force is required for producing the
torque yet every force is not capable to produce
torque. If the line of action of force passes
through axis then torque about the axis is zero.
Torque is also defined as moment of force.
Minimum torque
When [sin 6] . =0
i.e.,0 = 0° or 180°

Ton =0
Maximum torque
When [sin 0] . =1
i.e.,06 = 90°

Toax = FF
Rotation of a door about a hinge, rotation of
grinding wheel about a pivot or unbolting a nut
by a pipe- wrench can be cited as examples of
torque. In these for producing a desired rotational
effect.

T = constant

= Fr sin 0 = constant

constant

rsin®
Longer the arm and greater the sin 0, lesser
will be the force required for producing desired
rotational effect. Therefore, it is much easier to
rotate a body about a given axis when the force
is applied at maximum distance from the axis of
rotation and normal to the arm.
Eg : Easy sharpening of long pencil.

= F=

-l

) "

=l

6=90°

s!" _ Concept Reminder

Torque is a rotational analogue of
force or turning effect of force. It
is the measure of the tendency of
a force to rotate an object about

some axis.
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Comparison between force and torque:

Torque is the effect of rotatory motion and in
revolving motion it plays same part as force
plays in the translatory motion, i.e., the torque is
rotational analogue of force.

Rotatory motion Translatory motion
w=[x-d6 w = [F-ds
P = ; . 6 P = 'E N \7
- dL . dP
= — F = —
dt dt

Ex.

Sol.

Ex.

Sol.

Force F=-21+ 2] +2k is acting on a point

whose position vector is given as i+ 2] -k
then find out torque about origin.

T=rxF

k

-1

2

i
1
-2

N N —o

(4+2)i-22-2)j+@2+4)k

A
Il

6i-0]+6Kk

1=6i+6k
7] =6vJ2 Nm

A particle of mass 'M' is released in the
vertical plane from a point 'P' at x = x, on
the x-axis it falls vertically along y-axis. Find
out the torque t acting on the particle at a
time t about origin?

Torque is created by the force of gravity

;:rFsineﬁ

or T=rF=xmg

Rack your Brain ﬂ

What is the torque of force
F=2i-3j+4k N acting at the

point r :3?+2]+3L§ m about

origin?

a1.
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Ex. Find out the total torque acting on the body shown in figure about the point O.

10N
15N

20N
Sol.

10N ".15sin37°

>

20sin30°

T, =15s8in37x6 ©®+20sin30°x4 O -10x4 ®O

=54 + 40 - 40 = 54 N-cm
1, = 0.54 N-m

Ex. A particle having mass 'm' is projected with a velocity 'v,' from a point P on a horizontal
ground making an angle '0' with horizontal. Find the torque about the point of projection
acting on the particle-

(@) When it is at its maximum height ?
(b) When it is just about to hit the ground back ?

P Q

Sol. (a) When particle is at maximum height then t about point P is 1, = r F

42,




R V] sin20
T =—mg=mgx—2— "
p = ME=mE Xt

mv? sin20
e

(b) when particle is at point 'Q"' then 't'
about point P is T, =rF

The torque of a force 'F' about an axis AB is
defined as the component of torque of F about
any point O on the axis AB, along the axis AB.

In the given figure torque of F about O is

T, =rxF

Rack your Brain ﬂ

A thin rod of length L and mass M
is bent at its mid-point into two
halves so that angle between
them is 90°. the moment of
inertia of the bend rod about
an axis passing through bending
point and perpendicular to the
plane is:

ML? J2m2
(1) 5 (2) o0

ML? ML?
©) 24 @ 12

43.
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Rotational Motion

The torque of F about AB, t,, is component of g along line AB.

There are four cases of the torque of a force about an axis.

Case-l: Force is parallel to the axis of rotation,

F || AB
AB is axis of rotation about which the torque is required rxF is perpendicular to IE, but
|;|| ﬁ, hence rxF is perpendicular to AB.

The component of rxF and AB is, therefore, zero.

Case-ll: The line of force intersects the axis of rotation (F intersect AB)

A

B

F intersects AB along r then F and r are along the same line. The torque about O is

Fxl; =0
Hence component of this torque along line AB is also zero.

Case-IlI: F perpendicular to AB but F and AB don't intersect.

A"

In the 3-D, two lines may be perpendicular without intersecting each other. Two nonparallel
and nonintersecting lines are known as skew lines.

44,



Diagram shows the plane through the point of application of force 'P' that is perpendicular
to axis of rotation AB. Assume that the plane intersects the axis at the point 'O" The force
'F' is in this plane (since F is perpendicular to AB). Taking the origin at O,

Torque = rxF=0PxF

Thus, torque = rF sin 6 = F(OS) -

Where '0S' is the perpendicular from 'O’ to the line of action of the force F. The line OS is
also perpendicular to axis of rotation. It is thus the length of common perpendicular to the
force and the axis of rotation.

The direction of ©=OPxF is along the axis AB because AB L OP and AB LF. The torque

about AB is, therefore, equal to magnitude of t thatis F.(OS).

Thus, the torque of F about AB = magnitude of the force F x length of common perpendicular
to force and the axis. The common perpendicular OS is known as the lever arm or moment
arm of this torque.

Case-IV: F and AB are skew but not perpendicular.

Here we resolve F into two components, one is parallel to the axis and other is perpendicular
to the axis. Torque of parallel part is zero and that of perpendicular part may be found, by
using the result of case (llI).

Ex. Find torque of weight about the axis passing through point 'P'

Sol. t=rxF,r=R,F= mgsin 0
'r and 'F' both are at perpendicular so torque about point
T=mg R sin 6

BODY IS IN EQUILIBRIUM
We can say rigid body is in equilibrium when it is
in
(a) Translational equilibrium
i.e., Enet =0
Fe,=0andF _ =0

net nety

45.
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Rotational Motion

(b) Rotational equilibrium

Thet =0

i.e., torque about every point is zero.
Note: (i) If total force on the block is zero then
net torque of the forces may or may not be zero.
Ex.-
A pair of forces each of equal magnitude and

acting in opposite direction on the rod.
F

A B C
21
F

(ii) If net force on the body is zero then torque
of the forces about each and every point is same
T about B

1, =Fl+F(O
Tg =2F/(O®

T about C
1. =2F(0O

Ex. Calculate the point of application of third
force for which body is in equilibrium when
forces of 30 N & 20 N are acting on rod as

shown in diagram.
20N

A 10cm C 20cm B

30N

Sol. Assume the magnitude of third force is F, is
applied in upward direction then the body is
in the equilibrium when

(i) Fret = 0 (translational equilibrium)
= 20+ F=30
= F=10N

Therefore, the body is in translational
equilibrium condition when 10 N force act on it
in upward direction.

KEY POINTS

Translational equilibrium
Rotational equilibrium

¥ . Concept Reminder

Translational equilibrium:
Fret =0
Rotational equilibrium:

Thet =0

\
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(ii) Let us assume that this 10 N force act. Then keep the body in rotational equilibrium.
So, Torque about C =0

10N
20N
X
A C 20cm B
30N

i.e. 1.=0

= 30 x 20 =10 x

x =60cm

So 10 N force is used at 70 cm from point A to keep the body in equilibrium.

Ex. Calculate the point of application of force, when forces are acting on the rod as shown
in figure.

Sol. Since the body is in equilibrium so we conclude Fret =0 and torque about every point

is zero i.e., Tnet = 0.

5N
X
L

A y/
v

v
F F. 3N

1

Assume that we apply force F downward at A angle '0' from the horizontal, at x distance
from B

From I;net =0

= F.., =0 (gives)

net

F, = 8 Newton
From F =0;then=>5+6=F +3

nety
= F, = 8 Newton

If body is in equilibrium condition then torque about point B is zero.
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= 3x5+F .x-5x%x10=0
= 15 +8x-50=0

x=§ = Xx=4.375 cm

Ex. A uniform rod length 'l mass 'm'is hung from two strings of same length from a ceiling
as shown in figure. calculate the tensions in the strings ?

3u/4 23

———
A B

»

Sol. Assume us assume that tension in right and left string is T, and T, respectively. Then

A

mg
Rod is in equilibrium then
I;net =0 and :C'net =0
From I;net =0
mg=T,+T, (i)
From ;net =0 about A
/3L
mg—-—T, =
g 2 4 B
2mg
T, = —

Ex. A stationary uniform rod of mass m, length | leans against a soft vertical wall making
an angle 6 with rough horizontal floor. Find out the frictional force & normal force that
is exerted by the floor on the rod?
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Smooth

Rough

Sol. If rod is stationary so the linear acceleration and angular acceleration of rod is zero.

i.e.,
a,=0,a=0
Free Body Diagram
N, =f
=0
N1 — mg} acm

Torque about every point of the rod should also be zero
a=0

1, =0= mgcos@£+f£sin9 =N,cos 6.1l
2

N, cos(9:sin6f+%Ose

P mgcosO mgcoto
2sin0 2

Ex. The ladder shown in diagram has negligible mass and rests on a frictionless floor. The
crossbar attaches the two legs of the ladder at the halfway point. Angle between the
two legs is 60°. A boy sitting on the ladder has a mass of 80 kg. Find out the contact
force applied by the floor on each leg and the tension in the crossbar.
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Rotational Motion

Sol. The forces acting on different elements are shown in diagram. Consider the vertical

Ex.

equilibrium of ‘the ladder plus the boy’ system. The forces applied on this system are
its weight 80 g and the contact force N + N = 2 N due to the floor.

Thus, 2N =80 g

or N=40x 9.8 =392 N

Now assume the equilibrium condition of the left leg of the ladder. Taking torques of
the forces appling on it about the upper end,

N(2m) tan 30° =T (1 m)

or T =Ni=(392 N)xi=45o N

V3 V3

A thin plank of mass 'm' and length £ is pivoted at one side and it is held stationary in
the horizontal position by means of a light thread as shown in the diagram then find

out force on the pivot.

Sol. F.B.D. of the plank is shown in figure.

Plank is in equilibrium condition

So, F,., and t . on the plant is zero.
(i) FromF =0

= F..=0 =>N,=0
Now, F =0

nety
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= N, +T=mg .. (i)
Fromt =0

net

= 1. about point Ais zero

Y4
So, N, -/ =mg-—

_mg
22
Ex. A plate (square) is hinged as shown in
diagram and it is held stationary by means
of a light thread as shown in diagram. Then
find the force exerted by the hinge.

= N

Square Plate

Sol. FBD
Body is in equilibrium and T and mg
force passing through one line so from
1., =0,N=0

T

Z

mg

RELATION BETWEEN TORQUE AND ANGULAR
ACCELERATION: -

The angular acceleration of a stiff body is directly
proportional to the add of the components
of torque along the axis of rotation. The
proportionality constant 'a' is the inverse of the
MOI about that axis,

2T
or (X,ZT

Sr‘ Concept Reminder

A rigid body is in mechanical
equilibrium, if it is in translational
and rotational equilibrium i.e., if
total external force and torque
acting on body is zero.

51.
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Rotational Motion

Therefore, for a rigid body we have the rotational
analog of Newton’s second law;
1=l (i)

Following two points are significint regarding the

above mathematical equation.

(i) The above mathematical equation is valid
only for stiff bodies. If the body is not stiff
like a rotating tank of water, the angular
acceleration 'o' is different for different
particles.

(ii) The sum Xt in the above equation includes
only the torques of the external forces,
because all the internal torques add to zero.

Ex. A rod (uniform) of mass 'm' and length '¢'
can rotate in vertical plane about a smooth
horizontal axis hinged at point H.

H A

(i) Find out angular acceleration a of
the rod just after it is free from initial
horizontal position from rest?

(ii) Determine the acceleration (tangential

and radial) of point A at this moment.

Sol. (i) =, =la

¢ me? 3g
mg-— = a = o=—
2 20
3g 3g
a,=al=—2./=
(") A 2/ 2

(-. © = 0 just after release)

Ex. A rod (uniform) of mass 'm' and length £
hinged at point 'H' can rotate in vertical
plane about a s'mooth horizontal axis. Find
out force exerted by the hinge just after the
rod is released from rest condition, from
an initial position making angle of 37° with
horizontal?

Rack your Brain %

A solid cylinder of mass 2 kg and
radius 4 cm is rotating about its
axis at the rate of 3 rpm. Find
the torque required to stop it
after 2n revolutions.
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Fromt . = la
T about point A,
m¢?
T, =mgcos37°— = .
A g 2 3

6g

= a=-—2rad/sec?
5¢

Now tangential acceleration of centre of mass
¢ 3
a, o L= mye
2 5
Just after release therodv_=0=2a =0
Now resolving of 'a," in horizontal and vertical direction as shown

in diagram

From F__. = ma in both vertical and horizontal direction

13m
N2 =m g_g = N1 = g
25 25
2 2
Now, R = 1/N1 +N;
mg+/10

5

R =
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Rotational Motion

PULLEY BLOCK SYSTEM: -
If there is friction present between pulley and
string and pulley have massive then tension is

different on two sides of the pulley.
Reason: - To understand this concept we take a

pulley block system as shown in figure.

Sr‘ .. Concept Reminder

oo

At the centre of gravity of a body,
the total gravitational torque on

Assume that tension made in part AB of the .
the body is zero.

string is 'T' and block 'M' move downward. If
friction is present between string and pulley then
it opposes the relative slipping between pulley
and string, take two-point e and f on pulley and
string respectively. If friction is present then due

to. this, both points needs to .move to.geth'er. So s(" Concept Reminder
friction force act on d and e in the direction as v -
shown in diagram. If there is friction between pulley

and string and pulley have some
mass, then tension is different on
two sides of the pulley.

T

P

d

y

This friction force f acting on point d increases
the tension T, by a small amount dT.

Then T, =T,+dT

orwecansay T,=T, - f
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In this way the tension on two side of pulley is different If there is no relative slipping
between pulley and string then

a
og=—=—
R R

Ex. The pulley shown in diagram has moment of inertia | about its axis and radius R.
Find out the acceleration of the two blocks. If the string is light and does not slip on

the pulley.

Sol. Assume the tension in the left string is 'T.' and that in the right string is 'T,. Suppose
the block of mass 'M' goes down with an acceleration 'a' and the other block moves up
with the equal acceleration. This is also the tangential acceleration of the wheel rim

as the string does not slip over the rim.

The angular acceleration of the wheel a = %

The equations of motion for the mass 'M', the mass 'm' and the pulley are as follows:

Mg - T, = Ma (i)
T,-mg=ma (i)
TR-TR=la = % (i)

Substituting for T, and T, from equations (i) and (ii) in equation (iii)

[m(g-a)-m(g+a)R = %

Solving, we get

_ (M-m)gr®

a
I+ (M + m)R?
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Ex. Rod of mass 'M' and length 'L’ is released then « at this position?

B
", 8
mgu
2
Sol. r=Mg%cosG=axML
M L 0
o= gECOS _ 3gcosH
- 2 2xL
M- )
3
_3gcoso
2L

Ex. If no slipping is present between pulley and string then find a & T, & T, as shown in

figure.
Sol. a-= 2me _A8 e
mR> 1 7
2m+m + X —
R2
T,=ma (i)
T, = ﬁN
7
2mg - T, =2ma .. (i)
T, = 2mg - 2m 4g|_1ameg —8mg
7 7
T, = OMEy
7
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Ex. A string (cord) is wrapped around the disc
as shown in figure when string gets tight

find.
(i) a of block (ii) T in the cord.
m, R
-
SOL a = 2mg = 2mg = 4mg = ﬁ

m 5m 5m 5
2m+—
2 2

2mg - T = 2ma
8mg 2mg

T=2mg-—2=21%5
£ 75 5

FORCE COUPLE

Force couple: A pair of equal and opposite forces
with different line of action is known as couple or
force couple. A couple produces rotation without
translation.

If on a system 2 forces of equal magnitude acting
in opposite direction with different line of action
produce force couple.

This force couple tries to change only rotation
state of the body.

When we open the lid of bottle by turning it our
fingers apply a couple to lid.

Ex. Check whether the forces applied are acting
as couple or not.

'S ™ ™
P —4F A

@ o (b) 0

S‘-‘ .. Concept Reminder
Torque acting on a system of
particles or rigid body vanishes if

either F=0 or r =0 or the angle

between them is 0° or 180°.
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Rotational Motion

Sol. @) F _=0,(x._)=0

net net:

Not a force couple (same line of force)
Mathematically, It is defined as

| 7. | =F (L distance between line of

force)
(b) F_=0,1t,=-FR-FR
= - 2FR
It is a force couple (Different line of
force)
Ex. (i) Check whether the forces produced
are force couple or not.
(ii) Find torque about A, O, B, C
2
A
Sol. (i) Forces make couple as F _, = 0 &

different Line of force.
(i) 1, =0+2F(20) = 4F/¢

1, =0+ 2F(20) =4Fl
1, = 2F(0) + 2F(f) = 4F¢

To = —2F(x) + 2F(20) + 2F(x) = 4F/

Ty =Tg =Tg = Tc =4F(

Note: For rigid body-

(a)
(b)

(0

It is possible to have non-zero torque with
zero resultant force, eg: Force couple.

It is also possible to have net force with
zero resultant torque about COM. eg: Free
fall of a body.

If on a system net force is zero then
calculation of torque is independent upon
the choice of point about which it is to be
calculated.

Rack your Brain ﬂ

A rod PQ of mass M and length
L is binged at end P. The rod is
kept horizontally by a massless
string tied to point Q as shown
in figure. When string is cut, the
initial angular acceleration of the
rod is.

UL

"I

Sr‘ _ Concept Reminder

In rotational motion, moment of
inertia and torque play the same
role as mass and force respectively
play in linear motion.

s(" ~ Concept Reminder

It is possible to have non-zero
torque with zero resultant force,
eg: Force couple.
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Ex. O is the midpoint of an equilateral triangle ABC. F,, F, and F, are three forces acting
along the sides AB, BC and AC respectively as shown here. What should be the relation
between F, F, and F,, so that the total torque about O is zero.

Sol. Assume perpendicular distance of any arm from the centre of equilateral triangle is d.
Torque = (Force x Perpendicular distance of line of act of force from centre of triangle)
Total torque at point O,

t=Fd+Fd-Fd=0
= F,=F +F,

Ex. Two small childs weighing 10 kg and 15 kg are trying to balance a light rigid seesaw of
total length 5.0 m, with the fulcrum at the centre. If one of the childs is sitting at an

end.

(i)  Where should the other sit ?
(i)  Find normal force by the fulcrum.
Sol. (i) It is show that the 10 kg child should sit at the end and the 15 kg child should sit
closer to the centre. Assume his distance from the centre is x.
As the childs are in equilibrium, the normal force between a child and the seesaw
equals the weight of that child. Considering the rotating equilibrium of the seesaw,
the torque of the forces acting on it should add to zero. The forces are
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(@) (15 kg) g downward by the 15 kg child,
(b) (10 kg) g downward by the 10 kg child,
(¢) the normal force by the fulcrum.
Taking torques about the fulcrum,

(15 kg)g x = (10 kg)g (2.5 m)
or x=17m
(i) F, =150 +100 = 250 N

Ex. Jay and viru are trying to balance a rigid seesaw of total length 16 m, if mass of jay
is 20kg and weight of seesaw is 400N then what should be mass of viru in order to

balance it.

Sol. 1 =200 x 9 + 400 x 2 — mg(5) = 0 (about fulcrum)
=180+80-5m=0
5 m =260
m = 52 kg

Ex. A ladder is at rest as shown in figure. what
will be the minimum value of m so that S"‘ _ Concept Reminder

ladder will be in equilibrium. v
The minimum value of p so that

B ladder will be in equilibrium.
B

——Smooth

——Smooth

Sol. -mg (é cos e} +N,/sin6 = 0 (torque about A)

~_mgcoso
2 2sin6
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EXx.

Sol.

umg > mgcot 0
2
o cot o cotO
= 2 “min :T

A rod of weight 'W' is supported by two
parallel knife edges A and B and is in
equilibrium in a horizontal position. The
knives are at a distance 'd' from each other.
The centre of mass (COM) of the rod is at
distance x from A. The normal reaction on A

" »
¢ 14

N,+N;, =W

Thet = W x (d - x) — N, (d) = 0 (about B)
wd - Wx = N,d

_ W(d-x)

N, .

ANGULAR MOMENTUM (MOMENT OF LINEAR
MOMENTUM)

Angular momentum of a block about a given
axis is the product of its linear momentum and
perpendicular distance of the line of action of
linear momentum vector from the axis of rotation.

A

£/
L //Ae e
o]
’.6‘/'/7‘@\
Angular momentum = Linear momentum (P)

x Perpendicular distance of line of action of
momentum from the axis of rotation (r ).

% . Concept Reminder

F 3
b 4

d
N, = VA=)
d
KEY POINTS \

Angular momentum

Definitions

Angular momentum of a body
about a given axis is the product
of its linear momentum and
perpendicular distance of line
of action of linear momentum
vector from the axis of rotation.
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L=mvxrsin®
= L=rxp
Here L is the angular momentum of a moving
particle about point O, p is the linear momentum

of the particle and r is the position vector of the

particle regarding the point.

Unit: S.I. J-sec or kg-m?/sec
Dimensions: [ML2T]

Angular momentum is an axial vector.

C

As torque (FxI;) is defined as the ‘moment of

force’, Angular momentum is also defined as
moment of linear momentum.
In cartesian coordinates angular momentum:

L=(rxp)=mrxv) [p=mv]
L= m[(xf+ yj+z|2)x(vxf+vy]+vzlz)]

i.e., L= m['i\(yvZ —zvy)— j(xvZ -zv, )+ Iz(xvy -yv,)]
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Ex.

Sol.

Ex.

Sol.

A ball mass ‘m’ starts moving from point
(0, d) with a constant velocity ui. Find out
its angular momentum about the origin at
this moment what will be the answer at the
later time?

i

—»X

(0]

L = —mduk and it will remain same.

A ball of mass 'm' is moving along the line
y = b, z = 0 with speed v (constant). State
whether the angular momentum of ball
about origin is decreasing, increasing or
constant.

| L | =mvrsin®
= mvr, =mvb
|L| = constant as v, b and m all are
constants.

Direction of rxv also remains the same.
Thus, the angular momentum of particle
about origin remains constant with due
course of time. B

Note: In this problem |r | is increasing, 0 is
decreasing but r sin 0, i.e., b remains
constant. Hence, the angular momentum
remains constant.

5?‘ ~ Concept Reminder

ol

In Cartesian coordinate:

L= m[f(yvZ —zvy)—

j(xvZ -zv, )+ lz(xvy -yv)]
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Ex. A ball of mass 'm' is projected with velocity
v at an angle 6 with the horizontal. Find
out its angular momentum about the point
of the projection when it is at the highest
point of its trajectory.

Sol. At highest point it has only horizontal
component of velocity v, = v cos 6. Length
of the right angles to the horizontal velocity
from O is the maximum height, where

y]l

(0]
vZsin? 0
max 2g

mv? sin® 0 cos 0

2g

=  AngularmomentumL=

Angular Momentum of a stiff body rotating about
a fixed axis:-

Assume a particle P of mass m is going in a circle
of radii 'r' and at some instant speed of the
particle is 'v'. For find out the angular momentum
of the particle about the axis of rotation, the
origin may be chosen everywhere on the axis. We
select at the centre of the circle. In this case

rand P are at right angles to each other and

rxP is along the axis.

Therefore, component of rxP along the axis is
mvr itself. The angular momentum of the whole
stiff body about AB is the add of components of
all particles, i.e.,

L= Z mrv;

Sr‘ _ Concept Reminder

v -

In this case, angular momentum
of particle about origin remains
constant with due course of time.

sf" ~ Concept Reminder

Angular momentum of projectile
about point of projection when it
is at topmost point is,
mv? sin? @ cos 0
28

(=
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Here, v, = ro

L:Zmi ri2 o
i
or L=anmi r?
i

or L=lo
Therefore, | is the MOI of the stiff body about AB.

Note: Angular momentum L about axis is the
component of '@ ' along the axis. Almost of the
cases angular momentum about axis is lo.

Ex. Two small balls 'A' and 'B, each of mass
m, are attached tightly to the ends of a
light rod of length d. The structure spins
about the perpendicular bisector of the
rod at an angular speed o. Find out the
angular momentum of the individual
balls and of the system about the axis of
rotation.

Sol. Consider the situation shown in figure. The
velocity of the ball 'A' with respect to the

. d
centre Ois v = %

me—»

Qe

v

The angular momentum L of the ball w.r.t.
the axis is

L, =muvr = m(m—dJ (Ej = lmcod2
2 2 4

The equal the angular momentum L, of the
second ball. The angular momentum of the
system is same to sum of these two angular
momenta i.e., L = 1/2 mod2

¥ . Concept Reminder

oo

Angular Momentum of a rigid body

rotating about a fixed axis:
L=lo
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Rotational Motion

CONSERVATION OF ANGULAR MOMENTUM:

The time rate of exchange of angular momentum
of a particle about some reference point in an
inertial frame of reference is same to the net
torques acting on it.

- dL
O  Tnet = E

(D)

- dL
Now, assume that thet = 0, then rr =0

So, that L = constant.
When the external resultant torque acting
on a system is zero, the net vector angular
momentum of the system remains constant. This
is the assumption of the conservation of angular
momentum.
For a stiff body rotating about an axis (the z-axis,
say) that is fixed in an inertial reference frame,
we have

L, =lo
It is possible for the MOI | of a rotating body
to change by relocation of its parts. If no net
external torque acts, then 'L' must remains
constant and if MOI 'I' does change, there must
be a compensating change in ®. The principle of
angular momentum conservation in this case is
stated.

lo = constant.

Ex. A wheel of MOI | and radius R is rotating
about its axis at an angular speed o, It
picks up a stationary ball of mass 'm' at its
edge. Find out the new angular speed of the
wheel.

Sol. Total external torque on the system is zero.
Therefore, angular momentum will remain
conserved.

Thus, |, =l,0,

o
or o,=-—1
[

2

Definitions

When the resultant external
torque acting on a system is
zero, the total vector angular
momentum of the system
remains constant. This is the
principle of the conservation of
angular momentum.

Sf‘ _ Concept Reminder
_ dL
Tnet = E

if T . =0, then L = constant.

n
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— — — 2
Here, | =1, 0, = o, I, =1+ mR

Case | Case Il

Comments on Linear Momentum:

In case-I: Linear momentum is not conserved
just before and just after collision because during
collision hinge force act as an external force.

In case-ll: Linear momentum is conserved just
before and just after collision because no external
force on the string.

Comments on Angular Momentum:

In case-I: Hinge force acts at an external force
during collision but except point A all the other
reference point given 1 # 0. So, conservation of
angular momentum is only for point A.

In case-Il: angular momentum is conserved at all
points in the world.

S?‘ _ Concept Reminder
A Hinge DOONOOVRINNNNNN
m

L

_u u

v v

m @
Case | Case |l

In case-l: Linear momentum is
not conserved.

In case-Il: Linear momentum is
conserved.

Ex. A rod (uniform) of mass 'm' and length £ can rotate freely on a soft horizontal plane
about a vertical axis hinged at point 'H. A point mass having same mass 'm' coming
with an initial speed 'u' perpendicular to rod, strikes rod in-elastically at its free end.
Calculate the angular velocity of the rod just after collision?

67.
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Sol. Conservation of angular momentum is about H because no external force is present in

EXx.

horizontal plane which is producing torque about H.

2
mufz[m:f +m£2Jm = m:ﬂ

4/

A rod (uniform) of mass 'm' and length 'l' can rotate freely on a soft horizontal plane
about the vertical axis hinged at point 'H. A point mass having same mass 'm' coming
with an initial speed 'u' perpendicular to the rod, strikes rod and sticks to it at a
distance of 3£/4 from hinge point. Calculate the angular velocity of the rod just after
collision?

Sol. From conservation of angular momentum about H, initial angular momentum = final

angular momentum

m,l
H G | nitial position

— >

3l/4

3mu/
= :m£2[1+i}m

4 3 16
3u 16 + 27
- = w
4y { 48 }

B 36U

43¢
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Ex.

Sol.

Ex.

Sol.

A baby of mass 'm' stands at the edge of a circular platform of radii R and moment of
inertia. A platform is at rest initially case. But the platform rotate when the baby jumps
off from the platform tangentially with velocity 'u' with respect to platform. Determine
the angular velocity of the platform.

Let the angular velocity of platform is ®. Then the velocity of baby with respect to
ground v.

4

Vo = Vg ~ VDG
u=v_+oR
V,=U-o0R
Now from angular momentum conservation
L =L
O0=mv R-lo
= lo=m({u-oR).R

muR

= o= 5
I+ mR

Consider the situation of previous example. If the platform is rotating initially with
angular velocity o, and then baby jumps off tangentially. Find out the new angular

velocity of the platform.
Let the angular velocity of platform after jumps off the mass is ®. Then velocity of

baby.
V

+0R

Initially

Vo =V, TV,
V,=U-o0R
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From angular momentum conservation
(I + mR?)o, = lo — m(u - ®R)R
lo, + MR?*0, = lo = MuR + mMoR?
2
_ (I+ mR%)o, + muR
(I + mR?)

ANGULAR IMPULSE:
The angular impulse L of a torque in a given time

t,

interval is known as J-;dt.

t

Here, 't' is the resultant torque acting on the

body. Therefore,
- dL - -
T=— ~tdt=dL

dt

t,

or J-%dt = angular impulse Lo —Ls

t

Therefore, the angular impulse of the resultant
torque is same to the change in angular
momentum. Assume few examples based on the
angular impulse.

Conservation of Angular Momentum

Newton’s 2nd law in rotation:

Where t and L are about the same axis.

Angular momentum of a system or a particle
remains constant if t1_ = 0 about axis of rotation.

Even if the net angular momentum is not
constant, one of its component about an axis
remains constant if the component of torque
about that axis is zero.

Impulse of torque: J.rdt =AJ

AJ = Charge in angular momentum.

Suppose a ball is tied at one end of a cord whose
other end passes through a vertical hollow tube.
The tube is held in one hand and the cord in the

Definitions

The angular impulse of a torque
in a given time interval is defined

t,

as j;dt.
t1
¥ Concept Remind
% pt Reminder
- dL - -
OT:E Tdtzdl—-

t,

. j%dt = angular impulse Lo — L

Y

KEY POINTS \

Angular impulse
Conservation of  angular
momentum



other. The ball is set into rotation in a horizontal circle. If the cord is pulled down, shortening
the radius of the circular path of the ball, the ball rotates faster than before. The cause is
that by shortening the radius of the circle, the moment of inertia of the ball about the axis

of rotation decreases.
Hence, by the law of conservation of angular momentum, the angular velocity of the ball

about the axis of rotation increases.

|

If when a diver jumps into water from a some height, he doesn't keep his body straight
but pulls in his legs and arms toward: the centre of his body. On doing so, the MOI 'l' of
his body decreases. But since the angular momentum lo remains constant, his angular
velocity  correspondingly increases. Therefore, during jumping he can rotate his body in

the air.

2
A

A man with his arms outstretched and holding the heavy dumb bells in each hand, is
standing at centre of a rotating table. When the man pulls in his arms, the speed of
rotation of the table increases. The reason is that on pulling in the arms, the distance
'R' of the dumbells from the axis of rotation decreases and so moment of inertia of the
man decreases. Therefore, by angular momentum conservation, the angular velocity

increases.

1.
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In the same way, the ballet dancer and ice skater decrease or increase the angular velocity
of spin about the vertical axis by pulling or extending out their limbs.

A uniform disc of mass ‘m’ and radii R is free to rotate in horizontal plane about a
vertical soft fixed axis going through its centre. There is a soft groove along the diameter
of the disc and two small balls of mass 'm/2' each are placed in it on either side of
the centre of the disc as shown in figure. The disc is given initial angular velocity ® and
released, then-

Ex.

Sol.

()
(i)
(iii)

O]

or

(ii)

The angular speed of the disc when the balls reach the end of the disc is.
The speed of each ball relative to ground just after they leave the disc is.

The net work done by the forces exerted by disc on one of ball for the duration
ball remains on disc is.

Let the angular speed of disc when the balls reach the end be . From conservation
of angular momentum

1
Emszo = —mR?w + —R%0w + —R%0
o)
®=—"
3

The angular speed of the disc just after the balls leave the disc is © = Lo

72.



Assume the speed of each ball just after they leave the disc be v. From conservation
of energy.

M mRr2 mf):l L P SR VN LUV
2(2 2(2 22 2 2

Solving we get
B 2Rw,
-3

Note: v =,/(0R)* + V> , v, = radian velocity of the ball.
(iii) Work done by all forces equal

2 2
K, — K. =l[mj\,2 _ MR

\%

9

KINETIC ENERGY OF AN OBJECT IN PURE
ROTATION:
For i*" particle

Rack your Brain ﬂ

A circular platform is mounted
on a frictionless vertical axle. Its
radius R = 2m and its moment
Mansie of Fatation of inertia about the axle is 200
B kg m2. It is initially at rest. A 50
kg man stands on the edge of
the platform and begins to walk

1 2
(KE) _Emivi along the edge at the speed of
’ 1 ms™ relative to ground. Find
(KE)poay =25mi(®Ri)2 the time taken by the man to
complete one revolution.
— 1 2 2
= 50) Emi Ri

1,2
(KEpoqy =510
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Relation between L and KE: e
¥ . Concept Reminder

(KE) = o2 x 11 ey (If L = constant) -
S T T - In pure rotation motion,
11
L2 W = — (02 — @2
(KE) = — rot = 7 (oF — o))
21
KE = consltant

Ex. If L is increased by 10% then what will be

the % change in KE. 5‘ _ Concept Reminder
L2 L
Sol. =3 Rotational work done by a force
10 about a fixed axis is defined as
"2:"1+ﬁ"1:1'1"1 Wmtzj'%.dé_
2
h
2
K _ 2l - K _ 4 :
K, (L) K, 12113
2
K, =1.21 K,
Percentage change
_i 1.21K, — K
= 002K K o0

i
1
Percentage change = 21%.

Ex. KE is reduced by 64% of it’s previous value

then % change in L will be. S‘ _ Concept Reminder
64 L
Sol. K, =K, ——0K1 = 0.36K, In rotational motion,
2
14 KE = %ImQ - %
2
0.36 L
2 2
12 =12(0.36)
L,=06L

0.6L, L,
Percentage change = L—X 100
1

= 0.4 x 100 = 40% (decrease)
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WORK, ENERGY THEORM IN ROTATION
Work Energy Theorem

Wi = KEgnat = KEpivial
Here in rotation W,_= %I(m? )
Ex. A gentle push occurs, then find angular speed of rod, when it becomes horizontal.
1
sol. W, +W, = 5|(m$ —o?) (W, =0)
Mg = = Li()’
2 2 M, L
L ML, ,
M — A
g 2 3x2 ()
3 L/2
W= —g ol
L Lo
Ex. System is released from rest. When rod becomes vertical. Find (i) angular speed of rod
(ii) Velocity of particle B. (Given: mass of rod is 4 m).
(A) (B) (©
m m
P @ - 0@
L/4 L/4 L/4 L/4
sol. (i) Wau = AK
1 2
(ng )rod + (ng )particles = El(mf) -
4mgl 2
g N mgf N mg3/ +mgl = 142m¢ o2
4 48

(if)

Tnet =

=
=

Lsys

3/
4
— Rotational form of Newton’s 2™ law.

75.




Rotational Motion

If Thet = O (about any axis or point)
dl:sys =0

constant

d |:sys

Iw = constant

If a system is isolated from its surrounding i.e. any internal interaction between part of
the system can not alter its total angular momentum.

Examples Based on Conservation of Angular Momentum:
e |f a man skating on ice folds his arms then his MOI decreases and ‘w’ increases.

e A diver jumping from a some height folds his arms and legs (MOl 'I' decrease) in order to
increase number of rotation in air by increasing ‘w".

76.



e |fa person moves towards the centre of rotating platform then ‘I’ decrease and ‘®’ increase.

Note:
e The angular speed of a planet around the sun increases when it comes near the sun.

e The speed of the inside layers of the whirlwind in a tornado is alarmingly high.

e [f external torque on the system is zero, then the angular momentum is conserved. However
the rotational kinetic energy is not conserved.

Lo, =10,
1 1
= Lx=Lol=l,x=o
2 2
= LK =K

If 1, >1,then Kr1 < Kr2

So, if the moment of inertia decreases, the rotational kinetic energy increases and vice versa.

Ex. Adisc is rotating about Geometrical axis with MOI |, and another disc is at rest whose
MOI about the same axis is I,. If the other one is placed on the first disc co-axially then
new o of the system will be.

I, ® I

Sol. |.o+0=(, +1)o
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Rotational Motion

Ex. A dancer is standing on a heavy rotating platform. If she stretch her arms then angular
momentum of dancer.

Sol. (Lp +Lo), = (Le +Lo),
IPcoi +IDoJi :IPcof +IDo)f

In system | increases so, new © decreases. It means L of dancer will increases.

Ex. If two small particles of mass m sticks on a ring of mass M and radius R as shown in
figure new angular speed of system will be ?

M,R i3
o)
(O] m
sol. | = MR?, | = MR2 + 2mR?

lo=1"e'

, M
o'= [0)
[M+2mJ

Ex. Acylinder (solid) of mass ‘M’ and radius ‘R’ is rotating along its axis with angular velocity
o without friction. A particle of mass ‘m’ moving with velocity v collides against the
cylinder and sticks to its rim. After the impact calculate angular velocity of cylinder.

Sol. Initial angular momentum of cylinder = lo
Initial angular momentum of particle = mvR

Before

Before collision the total angular momentum
L =lo + mvR

After collision the total angular momentum
L, =( + mRY)w’

L=t
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=  (+mR»)o'=lo+mvR
. lo + mvR
New angular velocity o’ = o mve
I+ mR?

Note: Initial kinetic energy of the system
e tmv?
2 2
Final kinetic energy of the system
1 2
=—(l + mR*)w'?
2( )

Ex. Two discs of equal moment of inertia rotating about their regular axis going through
centre and perpendicular to plane of disc with angular speeds o, and o,. They are take
into contact face to face coinciding the axis of rotation. then find-

(i) Angular speed of the system
(ii) KE, of the system

(iii) KE, of the system

(iv) Loss in KE of the system

sol. () (L) + (i), = (o), +(Le),

lo, +lo, = (I+No

_ (o, + o,)
21
. o, + 0,
2
. 1 1 1
(i) KE =5Icof +5Im§ = El(mf +m§)

(i) KE, = %a e

= lx2| (0)1+032]2=I(0)1+m2)2
2 4
(iv) KE,. =KE —KE,
= %(mf + coi) —%(co1 + (;)2)2
KEipss %((’% ®,)*
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Rotational Motion

Ex. A rod (uniform) of mass m and length | can rotate freely on a soft horizontal
plane about a vertical axis hinged at point 'H. A point mass having equal mass m
coming with an initial speed 'u' perpendicular to rod, strikes rod and sticks to it
at the distance of 3l/4 from hinge point. Find the angular speed of rod just after

collision?
Sol. Angular Momentum about hinge mml:-
L =L, o
3l/4 §
2 2 u

3/ m/ 37

mu| — | = +m|—| |o
4 3 4
36u

0=—
43¢

Note: For Fixed Axis Rotation:
If question is asking about acceleration then use tnet =la..

If question is asking about angular speed (») then first through is WET (Work Energy Theorem)

If question discusses about relation between Iv/sw then first thought is COAM (conservation
of angular momentum).

Ex. A rod (uniform) of mass m and length £ is kept vertical with the lower side clamped.
It is slightly pushed to let it drop down under gravity. Find out its angular speed when
the rod is going through its lowest position. Neglect any friction at the clamp. Calculate
the linear speed of the free end at this instant?

Sol. If the rod reaches its lowest position, the centre of mass is lowered by a distance
£. Its gravitational potential energy is decreased by mgf. As no energy is lost
due to friction, this should be same to the increase in the kinetic energy. If the
rotation occurs about the horizontal axis through the clamped end, the MOI
is | = ml?*/3. Thus,

1 5

—lw® =mg/

5 g

L

1M me2) ,
= — o =mg/

[j g :
or m=6—g

/

The linear speed of the free side is

Vv = (o = /6g!
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COMBINED ROTATIONAL AND TRANSLATIONAL
MOTION OF A RIGID BODY:

We have already study about translational motion
affected by a force and rotational motion about a
fixed axis caused by a torque. Now we are going
to consider a motion in which body undergoes
rotational as well as translational motion. Rolling
is an example of such type motion. If axis of
rotation is moving then motion is combined
translational and rotational motion.

To understand concept of combined translational
and rotational motion we consider a uniform disc
rolling on the horizontal surface. Velocity of its
COM is v__ and its angular speed is o as shown
in diagram.

P

Assume a point A on the disc and concentrate on
its motion.

Path length of point A with respect to ground will
be a cycloid as shown in diagram.

S A

Motion of point 'A’ with respect to center of mass
(COM) is pure rotational while COM itselfis moving
in a straight line path. Therefore, for the analysis
of rolling motion we deal translational motion
separately and rotational motion separately and
then we combine result to analyse the overall
motion.

Sr‘\ Concept Reminder

Conservation of angular
momentum can also help you
distinguish between a hard boiled
egg and a raw egg. The egg which
spins at a slower rate shall be raw

egg.

Rack your Brain “

A thin circular ring of mass M and
radius r is rotating about its axis
with constant angular velocity .
Two objects each of mass m are
attached gently to opposite end
of diameter. Find final angular
velocity of ring.
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Rotational Motion

Any point 'A' velocity on the stiff body can be
expresses as-

VA = Vacom + Vcom
vV = | vcowm |
| vacom | =re in the direction perpendicular

(L) to line OA.
Therefore, the velocity of point 'A' is the vector

addition of as vcom and vscom shown in figure. 5("\\\ O B
Velocity of any point of the rigid
body in combined R + T motion
is the vector sum of v(velocity of
centre of mass) and ro.

Important points in combined Rotational and
translation motion:

Velocity of any point of the stiff body in combined
R + T motion is the vector sum of 'v' (velocity of
centre of mass) and 'ro".

For example- A disc of radius r has linear velocity
v and angular velocity ® as shown below then
find velocity of point A. B, C, D on the disc

We divide our problem in two parts:
(1) Pure Rotational about centre of mass.
(2) Pure Translational
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Then combine the result of above both

In combined translational and rotational motion
angular velocity of any point of a stiff body with
respect to other point in the stiff body is always

same.

For example:
Now for o,

DA

2y
T

or

ﬁ\_ Concept Reminder

o O

Then combine the result of above
both

V2 + (ro)?

srﬁ\\\ Concept Reminder

\

In  combined rotational and
translational motion  angular
velocity of any point of a rigid body
with respect to other point in the
rigid body is always same.
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Rotational Motion

Now for o, :

_2V_v
DB oy

= O
r

Distance travelled by the COM of the rigid body in
one full rotation is 2nR.

s = 27nR

Rack your Brain ﬂ

A balls rolls without slipping.
The radius of gyration of the ball
about an axis passing through
its centre of mass is K. If radius
of ball is R, then find fraction of
total energy associated with its
rotational motion.

S‘\ Concept Reminder

In one complete rotation, distance
moved by COM of rigid body is:

(1) s = 2znR (for pure rolling)

(2) s > 2xnR (for forward slipping)
(3) s < 2nR (for backward slipping)
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This can be shown as under:
In one rotation angular displacement 6 = 2n = ot

s=v-T =(03R)[2]=27IR
o

In forward slipping

s > 2nR (as v > oR)
and in backward slipping
s < 2xr (as v < ®R)

The speed of any point on the circumference of

the body at any instant time t is 2Roasin%t.

Proof:
vxp:v—vcosezv[1 — cos 0]
Vi, =V sin 0

[ vp | = \/v2 sin? ® + v2(1- cos 0)?

v =v2v2 - 2v% cos 0 = v2 v(1- cos 0)"2

= 2vsin 2 = 2vsin oo_t = 2Rmsin (D—t
2 2 2

The path length of a point on circumference is a
cycloid and the distance travelled by this point in
one full rotation is 8R.

S("\\\ Concept Reminder

The path of a point on
circumference is a cycloid and the
distance moved by this point in
one full rotation is 8R.

°A20
A1
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In the agove figure, the dotted line is a cycloid
and the distance A, A,, ...., A_ is 8R. This can be
confirmed as under.

According to point '3, speed of point A at any
instant is,

= 2Rcosm

Distance moved by 'A' in time dt is,
ds =v,dt = 2Rmsm( 5 Jdt

Therefore, the total distance moved in "1' full
rotation is,
T=2n/®
s = I ds
0

T=2n/w
or s= I 2Rcosm( Jdt

0
On integration we get,
s = 8R
x and y coordinates of the lowest point at any
time t.

) 4

f!\\ Concept Reminder

t=0

vV, = 2Rmsin (%t)
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At time t the lowest point will rotate an angle 6 =
ot with respect to the centre of the disc 'C' The
centre C will move a distance s = vt.
In the figure,
PQ = R sin 6 = R sin ot
CQ =R cos 6=Rcos ot
Coordinates of point P at time t are,
x = 0M - PQ = vt - R sin ot
andy=CM - CQ =R - R cos ot
(x,y) = (vt = R sin ot, R = R cos ot)

ROLLING

Rolling Motion: When a spherical body performs
translatory motion as well as rotatory motion
then it is known as rolling. The velocity of centre
of mass represents linear motion while angular
velocity represents rotatory motion.

PURE ROLLING:

If the velocity of point of contact with respect
to the surface is zero then it is known as pure
rolling. If a body is performing rolling then the
velocity of any point of the body with respect to
the surface is given by

V =Vcm + ® xR

pure roling

e

contact point

Definitions

When a spherical body performs
translatory motion as well as
rotatory motion then it is known
as rolling.

Sr‘\ Concept Reminder

\

The velocity of centre of mass
represents linear motion while
angular velocity represents

rotatory motion.
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pure rotation

[0 o L T —
Va = V., + oR = Veu + Veu - 2VcM
Ve - Veu T %R = Vew* % = 5 Ven
Yo = Veut 0 = Visua
vy = Ve = (DTR = Al # v% - %ch
Ve = Veu + mR = v, - Ve, -0

pure translational

pure rotational

AR

P surface

rolling without slipping

A v, +toR=2v

o
3
l

=
>

pVCM- wR =0

(el)

Ex. A wheel of radius 'r' rolls (rolling without slipping) on a level road as shown in figure.

Find out the velocity of point 'A" and 'B".

B

¥




Sol. Contact surface is at rest for pure rolling
velocity of point A is zero,

So, v=or

Velocity of point B =v + or = 2v

Ex. Pure rolling then

R =

Sol. v, =2v,
=  20=2v,

Ve, =10 m/s

Ve = OR
= @:M:SOrad/s
20

Angular momentum of a stiff body in combined
rotation and translation:

Assume 'O' be a fixed point in an inertial frame
of reference. Angular momentum of body about
point 'O’ is.

[: [CM +|\/|(Fo X\?o)

The first term 'Low' represents the angular
momentum of the body as seen from the centre
of mass frame. The second term 'M(ro x vo)'

equals the angular momentum of centre of mass
about point 'O.

S'.‘ Concept Reminder

Angular momentum of a rigid
body in combined rotation and
translation:

Angular momentum of the body

about O is

L = lay +M(Fo ><\70)
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Rotational Motion

Ex. A circular disc of mass 'm' and radii 'R' is set into the motion on a horizontal floor with

a linear speed 'v' in the forward direction and an angular speed o =% in clockwise

direction as shown in diagram. Find out the magnitude of the total angular momentum
of the disc about bottommost point O of the disc.

Sol. L =Lew +m(ro x Vo) ()

Here, Lem = lo

= [1mr? || Y] IR
2 R 2

and m(Fo X \70) =mRv (perpendicular to paper inwards)

Since, both the terms of right hand side of Eq. (i) are in the same direction.

S‘\\\ Concept Reminder

If a body of mass M is rolling on
a plane such that velocity of its
centre of mass is V and its angular
speed is o, its kinetic energy is
given by

T2 1.9
KE = —Mv*® + —I
ILI:%va+va 2 20)

or |L|=§va
2

Kinetic Energy of a Rolling Body:
If a body of mass M is rolling on a plane such that velocity of its COM is 'v' and its angular

speed is o, its kinetic energy is given by

KE = l|v|v2 +1|o;)2
2 2
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' is moment of inertia of body about the axis passing through COM. In case of rolling
without slipping.

KE = - Mo?R? + —-1e [. V= oR]
2 2

c

= l[MR2 +1]o? = 1) o
2 2
I, is moment of inertia of the body about axis passing through point of contact.

Ex. A uniform rod of length | lies on the smooth horizontal table. A particle moving on
table has a mass 'm' and a speed 'v' before the collision and it sticks to rod after the
collision. The rod has a mass 'M' then find out.

(@) The moment of inertia of system about the vertical axis passing through the COM
'C' after the collision.

(b) The velocity of the COM 'C' and the angular velocity of the system about the COM
after the collision.

Sol. Figure shows situation of the system just before and just after the collision.

Initially the COM of the rod is at point 'O After collision when particle sticks to the
rod. COM is shifted from point 'O' to 'C' as shown in figure. Now the system is rotated
about the axis passing through 'C".

.o -
g S0 I S I — __ ™
® O v amem
\"
l/2 cl o [ =—M
] 2 2(M+m)
*0 M+
/2
M

Before collision After c_ollision

Now from the linear momentum conservation
mv
M +m
(a) Let us assume that the moment of inertia of the system about 'C' is "1 Then

mv=M+m)v' = v'=
I = I(rod)C + I(part)C

2 2
=1, + M{5 + m/l]
M2 . Mm?/? . mM?/?
12 4m+M)?  4(m+M)?
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Rotational Motion

_ MM + 4m) 2

©12(m + M)
(b) From Angular momentum conservation about A
L =L

0+0=lo—-(mM+M)VL
= lo=(mM+M)VvL0
Put the value of I, v, & |, we get
6mv
0=—-X"
(M + 4m)¢

Acceleration of a point on the circumference of body in R + T motion:

(a) Both v & v are constant:

N
()]
D

(b) When o is constant and 'v' is variable:

(Translational) (Rotational)

a

a
(Combined R + T)
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(c) When o is variable and 'v' is constant:

So, acceleration of different point on body is given by the following way
‘ .
(d) When both » & 'v' are variable:

00

timet=0 timet=t

Now, net acceleration of different points on rigid body is given by following way.

R

a'

oR aR

(Translational) (Rotational) (Combined Rotational
+ Translational)

aR + a

aR
a
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Ex. A force 'F' acts at centre of a thin spherical shell of mass 'm' and radius 'R. Find the
acceleration of shell if the surface is smooth.
Sol. " Force F, mg & N passes through centre so 1 =0, i.e,, body is in rotational equilibrium

N

vmg
- . . F

But Fret =F so body moves with constant acceleration a = —.
m

Ex. In a previous problem if force 'F' applied at a distance 'x' above the centre then find
out linear and angular acceleration.

Sol. This force F translate the body linearly as well as rotate it. So, Net torque about O it
T, = FX
From rotational motion 1, = la

A
N
To Fx 3Fx \m
o =—=— > = o= 2 F
| 2MR 2MR
3 —>a
Smooth
From linear motion of sphere /

F=ma = a=—
m

Ex. Arigid body of mass'm'and radius 'r' starts coming down an inclined plane of inclination
0. Then find out acceleration of centre of mass if friction is absent.

Sol. Sincefrictionisabsent so bodyis moving down the incline without rolling so acceleration
of centre of mass is g sin 6
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Ex. A solid sphere of radius 'r' is gently placed on the rough horizontal ground with an

initial angular speed o, and no linear velocity. If the coefficient of friction is p, find the
linear velocity 'v' and angular velocity o at the end of slipping.

Sol. 'm' be the mass of sphere.

Since, this is a case of backward slipping, so friction force is in forward direction.
Limiting friction will act in this case.

Net torque on sphere about the bottommost point is zero. Therefore, the angular
momentum of the sphere will remain conserved about bottommmost point.

A\
fmax
L =L

i f

Io;)o =lo+ mrv

2 2
or =mr’e, ==mr’e+mr(eor)
5 5
2
0==0, and v=ro=—ro,
7 7

THE NATURE OF FRICTION IN FOLLOWING CASES ASSUME BODY IS PERFECTLY RIGID

(i) v=oR
N

Smooth surface

No friction and pure rolling,
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(ii) v=o0R

\i

Rough surface

No friction and pure rolling (if body is not perfectly rigid, then there is a small friction
acting in this case which is known as rolling friction)

(iii) v>owRorv<owR
N

Smooth surface

No friction force but not pure rolling.
(iv) v>oR

N

v > oR

<+

Rough surface

There is relative motion at the point of contact so Kinetic Friction, f = mN will act in
backward direction. This kinetic friction decrease v and increase w, so after some time
v = oR and pure rolling will resume like in case (ii).

(v) v<oR

Rough surface
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There is relative motion at the point of contact so Kinetic Friction, f = mN will act in
forward direction. This kinetic friction increase v and decrease w, so after some time
v = oR and pure rolling will resume like in case (ii).

(vi) v = oR (initial)
Nj
‘ , v F

Smooth surface

No friction and no pure rolling.

(vii) v = oR (initial)
H\ V F
fA

Rough surface

Static friction whose value can lie between zero and mN will act in backward direction.
If the coefficient of friction is appropriately high, then f, compensates for increasing
'v' due to 'F' by increasing ® and body may continue in pure rolling with increases v as

well as o.

Ex. A rigid body of mass 'm' and radius 'r' rolls without slipping on the rough surface. A
force is acting on the rigid body 'x' distance from centre as shown in figure. Find value

of 'x' so that static friction is zero.

<

Rough surface

Sol. Torque about centre of mass
Fx=1_a (D)
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Rotational Motion

F=ma .. (i)
From equation (i) and (ii),
max = 1_a (a=oaR)
|

cm

X = S
mR

Conclusion:

I
This x[ﬂ] is the value for which friction will be zero. It means if a force is applied at this
distance, then even on smooth surface, pure rolling is possible.

Ex. A horizontal force F acts on a sphere of mass M at its centre as shown. Coefficient of
friction between ground and the sphere is p. What is maximum value of F, for which

there is no slipping?
e —
Sol. For linear motion F — f = Ma
and for rotational motion t = la

—~ f.R=2MR2.2
5 R

= f:zMaorMa:Ef
5 2

5 2F
F-f=—forf=— (-f<uM
5 = ( uMg)

2|:< Mg so F<7 Mg
7—M ) —2M

Note:
For pure rolling if any type of friction is required then the friction force will be static friction.

It can be zero, backward direction or forward direction depending on the value of 'x. If 'F'
below the point 'P' then friction force will act in backward direction or above the point P
friction face will act in forward direction.

On smooth horizontal surface pure rolling can be possible.

If friction is present, then it will be of static nature.

Work done by static friction in pure rolling is zero on fixed surface.

In pure rolling contact point is momentarily at rest but Its acceleration is not zero.
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KINETIC ENERGY IN PURE ROLLING

_o.R

m

Rough surface

v _=omR

cm

Total (KE) = Translational (KE) + Pure Rotational
(KE)

_ 1 1,2
= Emvch +5cm0)
2
1 V__®
= —mv_, +—mK?.—cm
2 cm R2
K2
Total KE=—mv_, |1+ —
cm R2
K2
(KE)eor _ _ RZ

(KE)total {1 4




ANGULAR MOMENTUM IN COMBINED ROTATIONAL & TRANSLATION MOTION
|:P = |:cm +(FX5)

Where r= position vector of COM w.r.t. P
L,=1,0+mv_R

ch

If pure rolling, ® =

\"
_ cm
P Icm R + mvcmR

Ex. Solid sphere starts pure rolling, find L about point P.

~———  «MR

cm

— V ~
Sol. Lp:(——mR2x%—mv RJK

Note: Angular momentum about any axis passing through contact points is conserved
in pure rolling.

Ex. Find KE in the above example.
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Ex. A cylinder is given angular velocity ® and kept on the horizontal rough surface the
initial velocity is zero. Find out out distance travelled by the cylinder before it performs
pure rolling?

)

w
v

MR2q,

Sol. uUMgR =

R

Initial velocity u = 0
v2 = u? + 2as
v2 = 2as . (i)
f, = Ma
uMg = Ma
a=pug .(iii)
o =owo,—at

From equation (i),

2
—Tugt, v=u+at

(D)

(DZ(DO

From equation (iii),
Vv = pgt

© = o 2v
=0y ——
R

From equation (ii),

o R ’
(%J = (2as) = 2ugs

2 52
o R
s=|—2
[18;@}
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Rotational Motion

Ex. A solid sphere of radius 'R' is set into motion on the rough horizontal surface with a

linear speed v, in the forward direction and an angular velocity o,

clockwise direction as shown in figure. If coefficient of friction is m, then find-

W

(a) The linear speed of sphere when it starts pure rolling.
(b) The time after which sphere starts pure rolling,
(c) The work done by friction over a long time.

% =~TR

in counter

Sol. (a) Since the net torque about the axis fixed to the ground and passing through the
point of contact is zero, using the conservation of angular momentum about this

(b)

(c)

axis,

2 2
-=mR%w, + mVR = ngQm +mvR

2 3
—gmvoR + mvoR = ngoR = Eva

_ 3v,
S
Now, v = v, — ugt

\%

3vO
=

=V, —ugt

3 3v,

Tug
Work done by friction,
AW, = K, - K.

2

7
—myv
10 20

, -59

Vg = ——
° 140

2

Vo
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Rolling Motion on an inclined plane:
Applying Conservation of energy

JRolling body

VCM

mgh = dv? + e
2 2

2
mgh = Jv ¢ tmk2 | 2
2 2 R?
1, K> .
mgh = Emv [1+ R_Qj (1)
h=ssind ()

From equation (i) and (ii),
2gh  [2gssin®
K2

Vrolling = K2
T+ — T+ —
R? R?

K2
When body slide, — = 0
R

Velocity when body slides
Vliding = \/Qgh = \/Qgs sin®

Vs > VR
Acceleration of body

vZ=u?+2as (u=0)

v? = 2as

Rolling body

VCM

2gh )2 gssin0
K2

\V— =
rolling 2

1+ A 14—

R? R?

Rack your Brain ﬂ

A solid cylinder of mass M and
radius R rolls without slipping
down an inclined plane of length
L and height h. What is the
speed of its centre of mass when
cylinder reaches its bottom.
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Rotational Motion

2gssin6
——— =2as

2
T % . Concept Reminder

~ JRolling body

VCM

2

When body slides, K—2 =0
R

Acceleration when slides

Y

a,=gsin® (a;,>a,)

Time taken by the rolling body to reach the Acceleration when body rolls
bottom .
gsinf
1 2 ®k T2
s=—at K
2 1+—2
R

2s h
= t=,/—, S =—
a sin®

Time of descend when body rolls

2s K? 2h K?
tR = - 1+ - = ) 1+ Y
gsin® R g sin“0 R X
s(" *._ Concept Reminder
1 [, ®? :
= Sino E 1+R_2 Time of descend when body slides
2 2h 1 2h
When body slides, tg :\/ S _ —— = — =
K2 gsno gsin’e sind\ g
— =0
R2

Time of descend when body slides

2s 2h 1 2h
ts = . = o N T . —
gsin® gsin©0® sin0\ g

So, t, >t
If different body are rolled down on an inclined

plane then body which has
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Same heigth for S, S, and S, Rack your Brain ﬂ
Rolling body

Two rotating bodies A and B of
masses m and 2m with moment
of inertia I, and I (I, > 1,) have
equal kinetic energy of rotation.

h If L, and L, be their angular
momenta respectively then:
L
ML, =7B (L, =2L,
v @L>L  @L>L,
K2
(a) — Least, will reach first
R
K2
(b) — Maximum, will reach last
R
K2
(c) — Equal, will reach together e
R g\\\ Concept Reminder
(d) From figure 6,>6, > 6, L L
a>a>a Change in kinetic energy due to
3 2 1 .
t<t, <t rolling
vV, =V, =V,

In next figure ifv, > v,
Change in kinetic energy due to rolling

Rolling body
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Rotational Motion

1
Emvg

|

K2) 1
T+ —|-—mv
RZ) 2

1 K2| . 5
5m[1+R—2J(v2 -Vv7)

Rolling v/s Sliding:

2
T+ —
e

K2
2

Vo<V, a, <ag t, >t

ROLL OF FRICTION TO EXECUTE ROLLING

MOTION ON AN INCLINED PLANE

A body of mass 'M' and radius 'R’ rolling down on
an plane inclined at an angle 6 with the horizontal.
The body rolls without slipping. The COM of the
body moves in a straight line. External forces

acting on the body are:

Weight Mg of the body vertically downwards
through the center of mass of the body.

The normal reaction N of the inclined plane. The
frictional force f acting upwards and parallel to

the inclined plane.
For linear motion,
Mg sin 6 — f = Ma

|

_ Concept Reminder
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For angular motion,

t=fR=la
Pure rolling condition,
a=aR
2 2
= Mgsinb-f=M R =M R
I MK?
. fo Mg 3|r;9
K2
In critical position
but f =uMgcos6 = I\/Ig;mze = uMgcos6
1+ R™
K2
tan0 . . .
u= > for pure rolling motion on inclined
1+ R”
K2
plane
tan6
min 2
T+ R”
K2

Ex. Increasing order of following-

i) a, =7 (i) v, =7
(i) Time =7 (iv) a,:a;:a
Sol. i) C<B<A
(i) C<B<A
(i) A<B<C
. 5 2 1
(iv) 23y
30:28: 21

Il
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Rotational Motion

Ex. Disc (M, R) rolls without slipping then maximum height attained?

. h
(@ y
sOL V2=w
]
T+ —
2
2 2gh
]
2
3 2
%=2g<h>
ho 3
4g

BENDING ON CYCLIST ON HORIZONTAL TURN
Suppose a cyclist is moving at a speed v on a circular horizontal road of radius r. Consider

cycle and the rider together as the system. The COM 'C' (figure a) of the system is going in
a circle with the centre at 'O' and radius 'r'.

As seen from A the frame rotating with the same angular velocity as the system is in

equilibrium
So,F _=0andt_=0

? " net net

For rotational equilibrium

M 2
1, =0 = Mg(AD) = ——(CD)
r
2 2
£=— = tanf=—
cD
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2

Thus the cyclist bends at an angle tan™ {V—gj with the vertical.
r

Note: In case of overturning inner wheels leaves the surface first.

Ex.

Sol.

Consider the arrangement shown in figure. The string is wrapped around the uniform
cylinder which rolls without slipping. The other end of string is passed over a massless,
frictionless pulley to a falling weight. Calculate the acceleration of the falling mass 'm'
in terms of only the mass of the cylinder 'M), the mass 'm' and 'g".

M

O

Let 'T' be the tension in the string and 'f' the force of (static) friction, between the
cylinder and the surface.

a, = acceleration of COM of cylinder towards right.

a, = downward acceleration of block m

a = angular acceleration of cylinder (clockwise)

Equations of motion are:

For block, mg = T = ma, ()
For cylinder, T + f = Ma, . (i)
o= T-FR D)
1 ur?
2

The string attaches the mass 'm' to the highest point of the cylinder, hence

Vm = VCOM + Ro

Differentiating, we get

a,=a, + Ra ..(iv)
We also have (for rolling without slipping)
a, = Ra (V)
By solving the equations, we get
8mg

a,=——-—
3M+ 8m

109.

Rotational Motion



Note: Work done by the friction in pure rolling on the stationary ground is zero because
the point of application of force is at rest. Therefore, mechanical energy can be
conserved if all other dissipative forces are ignored.

Ex. A thin massless thread is wound on the reel of mass 3kg and the moment of inertia 0.6
kg-m2. The hub radius is R =10 cm & peripheral radius is 2R = 20 cm. The reel is placed
on the rough table and friction is enough to prevent the slipping. Find acceleration of
the centre of reel and of hanging the mass of 1 kg.

Sol. Let, a = acceleration ofCOM of reel
a, = acceleration of the block of 1 kg
o = angular acceleration of the reel (clockwise)
T = tension in the string
and f = force of the friction

f

F.B.D. of reel is as shown below: (only horizontal forces are shown).
Equations of motion are:
T-f=3a (1)
t_ f(2R)-T-R
| |

0.2f-01T f T ..
== - (i)
0.6 3 6
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Free body diagram of mass is,

Al
B
10N
Equation of motion is,
10-T=a, ..(iii)
For no slipping condition,
a, = 2Ra or a, = 0.2a - (iv)
anda,=a - Raora,=a - 01la (V)

Solving the above five equations, we get
a, = 0.27 m/s”> and a, = 0135 m/s?

Ex. Find the maximum horizontal force F that may be applied to the plank of mass 'm' for
which the solid sphere doesn't slip as it begins to roll on the plank. The sphere has
a mass 'M' and radius 'R’ The coefficient of the static and kinetic friction between
sphere and plank are p_ and p, respectively.

M

Sol. The F.B.D. of the sphere and the plank are as shown below:

Writing equations of motion:
For sphere: Linear acceleration
a - HME

=g ()

.




Angular acceleration

_(uMgR 58 (i
2ur2 2R
5

For plank: Linear acceleration

F-uM
a, = HME (i)
m
For no slipping acceleration of point B and A is same,
So, a,=a +Ra
Solving the above four equation, we get

F= psg(M+§mj

Thus, maximum value of F can be p_g (M + %m)

Ex. Find the maximum height attained by solid sphere on a friction less track as shown.

12.




Sol. Let us suppose that sphere attain a maximum height 'H' on the track.

Ifinal Position

Initial Position

As the sphere move upward the speed is decreased because of gravity but there is no
force to change the o, (friction less track). So from energy conservation

2 1 9 _ 2
—mvg +5Ioao =mgH__. +—=log
2
H — V_O
max
g

TOPPLING:

You might have seen in your daily life that if a force 'F' is applied to a block 'A' of smaller
width it is more likely to topple down, before sliding while if the same force 'F' is applied
to an another block 'B' of broader base, chances of the sliding are more compared to its
toppling. Have you ever thought why it happens so to understand it in a better way let us

take an example.
= F F

Suppose a force 'F' is applied at a height 'b' above the base AE of the block. Further,
suppose the friction 'f' is sufficient to prevent sliding. In this case, if the normal reaction 'N'
also passes through 'C, then despite the fact that the block is in translational equilibrium
(F = f and N = mg), an unbalanced torque (because of the couple of forces 'F' and 'f') is
there. This torque has a tendency to topple block about point 'E'. To cancel effect of this
unbalanced torque normal reaction 'N' is shifted towards right a distance ‘@’ such that, the
net anticlockwise torque is equal to the net clockwise torque, or

13.
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Rotational Motion

or a=——

() (b)

Now, as 'F' or 'b' (or both) are increased, distance 'a' also increases. But it cannot go beyond
the right edge of block. So, in the extreme case (beyond which block will topple down), the
normal reaction passes through 'E' as shown in figure.

If 'F' or 'b' are further increased, block will topple down. This is why the block having broader
base has less chances of toppling in comparison to the block of smaller base. Because the
block of bigger base has more margin for normal reaction to shift.

Why the rolling is so easy on the ground:

mg

Because in this case normal reaction has zero margin to shift. so even if body is in
translational equilibrium (F = f, N = mg) an unbalanced torque is left behind and
body starts rolling clockwise. As soon as body starts rolling the force of friction is
so adjusted (both in the magnitude and direction) that either pure rolling starts (if
friction is sufficient enough) or body starts sliding. Let us take some examples related
to toppling.

In many situations an external force is applied to the body to cause it to slide along the
surface. In certain cases, the body many tip over before sliding ensues. This is known as
toppling.

There is a no horizontal force so pressure at the bottom is uniform and normal is collinear
with mg.

14.



If a force is applied at C.0.M., pressure is not uniform normal shifts right so that the torque
of 'N' can counter balance torque of friction.

If Fis continuously increased N keeps shifting towards right until it reaches the right most

point D.
Here we have assumed that surface is sufficiently rough so that there is no sliding on

increase Fto F__.
If force is increased any further, then torque of N can not counter balance torque of friction,

f and body will topple.
The value of force now is the max value for which toppling will not occur F__ .

a

f
" Rough surface

Fma><=fr
N =mg
e b2
2 2
= f—N—a:mgi =F :mgi
r b b max b
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If surface is not sufficiently rough and body slides before 'F' is increased to F_, = mg a/b
then body will slide before the toppling. Once body starts sliding friction becomes constant
and hence no toppling. This is the case if

F_>f

max limit

:mg%>pmg

ne >
b

F<F

max

"Rough surface

Condition for toppling u > % in this case body will topple if F > mg% but if u< %, body will
not topple any value of F applied a COM.

Ex. Find the minimum value of F for the block to topple about an edge.

a
P — E

Sol. When the block is about to topple the normal reaction N shifts to the edge through O.
FBD during toppling

Taking torque about O,

F(b) = Mg(%} SF - Mea

2b
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Ex. A uniform cube of side ‘@ and mass 'm' rests on the rough horizontal table. The
horizontal force 'F' is applied normal to one of faces at a point directly below centre of
the face, at a height of a/4 above the base.

0]
(i)

(iii)
Sol. (i)

or

(i)

(iii)

What is the minimum value of 'F' for which the cube begins to tip about an
edge?

Find the minimum value of p_so that toppling occurs.

If pu, = p.,» find minimum force for topping.

In the limiting case normal reaction will pass through 'O" The cube will tip about
'0" if torque of 'F' about 'O' exceeds the torque of mg.

Hence, F[ij > mg[ij
4 2

F>2mg

Therefore, minimum value of 'F' is 2 mg

In this case since it is not acting at the COM, toppling can occur even after the
body started sliding because increasing the torque of 'F' about COM.

Hence p_. = 0.

Now body is sliding before toppling, torque equation cannot be applied across it.
It can now be applied about COM.

a a .
FXZZNXE (1)
N =mg (i)
From equation (i) and (ii)
F=2mg

Ex. A cubical block of mass 'm'and edge 'a' slides down a rough inclined plane of inclination
6 with uniform velocity. Calculate the torque of normal force acting on block, about its
centre.

Sol. To avoid toppling
Net torque about ‘O’ has to be zero

17.
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= mgsin 9[%] -mg cose[%j +mgcosO(x) =0

= x=%(1—tan6)

So torque of Normal reaction about centre

a
m ol x-=2
gcos (x 2)

mgcosH (% tan GJ

1
T=—mgasind
5 g
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EXAMPLES

A uniform triangular plate of mass M whose vertices are ABC has lengths

l /
l,— and —
V2 2

about an axis passing through point B and perpendicular to the plane of the

as shown in figure. Find the moment of inertia of this plate

plate.
A
L] L
2
B ] C
2
A
L L
iy
B
L €

Assuming a square plate ACDE of mass 4M having centre B.
| (am) 2
® 6

Moment of inertia of plate ABC

N LV
® 4| 6 6
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Rotational Motion

Calculate the radius of gyration of a uniform circular disk of radius r and
thickness t about a line perpendicular to the plane of this disk and tangent to
the disk as shown in figure.

Two forces F,-2i-5j-6k andF, —=—i+2j-k are acting on a body at the
points (1, 1, 0) and (0, 1, 2) respectively. Find torque acting on the body about
point (- 1, 0, 1).

,=2i-5j-6k atpoint (1,1, 0)

F, :—f+2]—l2 at point (0, 1, 2)
ﬁz(ﬁ+]+0l§)—(—?+0]+l§)
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f— (21 +3-K)

|

B = xF = (214 ] -K) (27 - 5] - k)

i, =1, xF, :(?+j+ﬁ)x(—f+2]—ﬁ)

T, :(2f+]—ﬁ)x(2f—5]—6&)+(f+j+l§)x(—f+2}—&)
(

B, = (141 + 10] - 9k).

A simple pendulum having bob of mass m and length / is pulled aside to make

an angle 0 with the vertical. Find the magnitude of the torque of the weight of
the bob about the point of suspension. At which position its torque is zero ?
At which 0 it is maximum ?

rﬁg cosb

Torque of mg about point of suspension is
T = (mg sinb) (/)
(When bob is at the lowest position 1 = 0)
Torque is maximum when string is horizontal that is 6 = 90°.
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A particle having mass m is projected with a speed v at an angle o with hori-
zontal ground. Find the torque of the weight of the particle about the point of
projection when the particle

(a) is at the highest point

(b) reaches the ground

(a)

0t—=- >+

2 .
2g
vZsin2a [ mv?sin2a
Ty = mg =
2g 2

T, = (mv2 sino cos oc).

(b)

vmg

T, = mgR
= (2mv2sina cosa).
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Assuming frictionless contacts, determine the magnitude of external hori-
zontal force P applied at the lower end for equilibrium of the rod as shown in
figure. The rod is uniform and its mass is ‘ m’.

Wall

The F.B.D. of rod is as shown in the diagram

For the rod to be in the translational equilibrium
N,=P ...(i)

N, =W=mg ...(ii)

For rod to be in the rotational equilibrium, net torque on rod about any axis is
zero.

Net torque on rod about 'B' is zero

i.e.,

mggcose—N2f,’cose+Pfsin9 =0 ...(iii)
From equation (ii) and (iii) solving we get

P:m—gcote.
2
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A rod of negligible mass of length / = 2 m is pivoted at its centre and '2' mass-
es of m, = 6 kg and m, = 3 kg are hung from its ends as shown in figure.

= (X |
- -
m,=3kg m,=6kg

(a) What is initial angular acceleration of rod if it is horizontal initially.
(b) If rod is uniform and has a mass of m_ = 3 kg.
(i) Calculate the initial angular acceleration of rod.
(ii) Find the amount of tension in the supports to the blocks of mass 3 kg
and 6 kg (g = 10 m/s?).

(@)

. Tm - Tm "
)
m,g m.g
Torque about hinge
(m1g - ng)(gj =la
o= (m1 ;T2)g(’€ /621
3] o3
" 2(m1 - mz)g
(m1 + m2),€
o= M _ 10 rad/sec?.

2(6+3)
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(b) If mass of the rod is 3 kg then torque about hinge

(m1g - ng)g =o'

o = 5
¢ ) my?
m,|—| +m, 5 + 1
o = 2(m1 —mz)g
f{m1 +m, +?3}
2(6-—3)10
=——~ — =3 rad/s?
2[6+3+§}
3
T, T,
aT la
m.,g m.g

For m, block
mg-T,=ma

T =|mg m1fa
1 =T 2

T1=60—M=42N
2

For m, block
T,-mg=m,
T, =m2g+m2%x=30+—3><2><3

T,=39 N.
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Rotational Motion

The moment of inertia of a pulley system as shown is 3 kg — m% The radius of
bigger and smaller pulleys are '2 m' and "1 m' respectively. As the system is re-
leased from the rest, find angular acceleration of the pulley system. (Assume
that there is no slipping between the string and pulley and string is light)
[Take g =10 m/s?]

Let a be the angular acceleration of pulley system.
For 6 kg block

6g-T =6 (0) .(i)
For 3 kg block

T,-3g=3a ...(iD)
For pulley system
= 2T,-T, =la =3a ...(iii)

From the equation (i) and (ii) putting
values of T, and T,

= 2[6g-12a]-[3g+30] =30

a=20tl 6

128 — 240 — 3g — 3a. = 3a

90

-

= 3000=9¢g

= o=— =3rad/s%.
30
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A solid cylinder of mass M = 1 kg and radius R = 0.5 m is pivoted at its centre
and has three particles of mass m = 0.1 kg mounted at its perimeter in vertical
plane as shown. The system is initially at the rest. Find the angular speed of
cylinder, when it has swung through 900 in anticlockwise direction.

[Take g =10 m/s?]

m A
m
B
mC
After rotating 90°
m C
A m
mB

Using Energy conservation
U + K =U + K

;
(2ng+ng+O+O):ng+O+ng+§lm2

3mgR = 2mgR +%Iw2
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Rotational Motion

2
[ng=llm2] P:MR +3mR2]
2 2

2mg = (% + 3mR]oa2

W2 | 4me
MR + 6mR
_\/ 4mg \/ 4x0.1x10
MR + 6mR 1x0.5+6x0.1x0.5

= o=+5 rad/s.

A uniform rod of mass 'm' and length 'L' lies radially on a disc rotating with
angular speed o in a horizontal plane about its axis. The rod does not slip on
disc and the centre of the rod is at a distance 'R' from the centre of the disc.

Find out the kinetic energy (K.E.) of the rod.

—

Moment of inertia of rod w.r.t. the axis through the centre of the disc is : (by
parallel axis theorem).

+mR?

12

2
And K.E. of rod w.r.t. disc = %Im2 = %m(oQ [R2 +—]
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The moment of inertia of pulley system as shown is 3 kgm?. Its radius is "1 m".
The system is released from the rest. What will be the linear velocity of block,
when it has descended through '40 cm'. (Suppose that there is no slipping be-
tween the string & pulley and string is light).

[Take g =10 m/s?]

When the block is descended through 'x, let its velocity be 'v'
From energy conservation

1 1
mgx = —lo’ + —mv?
2 2
2
1.(v 1 9
mgx =—Il| —| +—mv
2 \r 2

= 2mgx = Vv? {L+m}
r.2

Putting all given values v =2 m/s.

3
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Rotational Motion

Two beads (each of mass m) can move freely in a frictionless wire whose
rotational inertia w.r.t. the vertical axis is 'I'. The system is rotated with the
angular velocity of o, when the beads are at a distance of r/2 from axis. What
is the angular velocity of system when the beads are at a distance 'r' from the
axis ?

3%
N A
1 l ]
r/2 | r/2
\)(DO \)(D
A A C O
) T o i
Y \V
r/2 | r/2 r r
Initial position Final position

No external torque so L =constant

L =L
i f
(lo, = Lo)
mr?  mr? ) )
|+ + 0, = l+mr°+mr o
mr?

|+
w = 2 > (JJO

|+ 2mr

130.



A system consists of '2' identical small balls of mass 2 kg each connected to
two ends of a "1 m' long light rod. The system is rotating about the fixed axis
through centre of the rod and perpendicular to it at the angular speed of 9
rad/s. An impulsive force of average magnitude 10 N acts on one of the mass-
es in direction of its velocity for 0.20 s. Calculate new angular velocity of the
system.

- dL
Text = E

dL = (%,,.dt)

) W, =9 rad/sec
ooy dl - |
(er):E, dL:(er)dt Qég ?(k)g

(Le-L)=[(Frdt), (o —lo)=(rFt) T, >

I(0—9) =(0.5)(10)(0.20)

0.5x10x0.20

A

{4

o =10 rad/s.

The end 'B' of uniform rod 'AB' which makes an angle 6 with floor is being
pulled with a velocity of v, as shown. Taking length of the rod as /, calculate
the following at instant when 0 = 37°.

(a) The velocity of end A
(b) The angular velocity of rod
(c) Velocity of CM of the rod.
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Rotational Motion

(@ v,sinB=v,cos0

\Y; 4v

v, = 0o _ 0
tan©6 3
4vO
) 3v, +4
(b) w:vosmeJrVAcosez 3 :9v0+16v0 5v0.
Y4 5¢ 15¢ 3/
( VAX+VBx VO
c) v, = —| 2X—=X | =—,
© X 2( / 2
2v

A string is wrapped over a curved surface of the uniform solid cylinder and
the free end is fixed with the rigid support. The solid cylinder moves down,
unwinding the string. Find the downward acceleration of solid cylinder.

For linear motion:
mg — T = ma ..(D)
For angular motion:

2
TR. = (mR ]oc
2

MRa .
T=
5 (i)
For no slipping:
a=Ra ...(iii)

From equation (i), (ii) & (iii)

.2,
2.

mg
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A uniform disk of mass 'm' is released from rest from rim of a fixed hemi-
spherical bowl so that it rolls along the surface. If rim of the hemisphere is
kept horizontal, find the normal force exerted by the bowl on the disk when it
reaches bottom of bowl.

Let R and r be the radii of hemispherical bowl & disc respectively
From energy conservation,

1 o 1.9
mg(R-r)=—mv® + —lo
gR-r)=gmvi+g

For pure rolling,

V=ro
2

mg(R - r) = %va +%[%mr2](¥j

mg(R - r) = %va ..(0)

From FBD of bottom:

mv* (i)

(R-r)
From equation (i) & (ii),
7

N=— mg.
3 g

N-mg =
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Rotational Motion

There is a rough track, a portion of which is in form of a cylinder of radius 'R’
as shown. Find minimum linear speed of a uniform ring of radius r with which
it should be set rolling without sliding on horizontal part so that it can com-

plete round the circle without sliding on the cylindrical part.

(¥)

Let v, and v, be minimum speed of ring of bottom and top of cylindrical part

At top of path
2

mv;
N+mg =

)

for minimum speed N =0
Vi = g(R - r) (D)

From energy conservation between bottom and top point of cylindrical part

12 5, 1 5 1 2 1
?mv1 +5Iw1 = 2mg(R—r)+§mv2 +5Ioa2

_ v, v,
For pure rolling o, =—,0, = —=
r r
2 2
v v
= lmv12 +l(mr2)—1 = 2mg(R —r) +lmv§ + l(mr2)—2
2 2 r2 2 2 r2
— mvi =2mg(R-r)+mv; . (i)

From equation (i) & (ii)

= mv; :ng(R—r)+mg(R—r)

= Vv, :‘/3g(R—r).
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A uniform solid sphere of radius 'R' is placed on a smooth horizontal surface.
It is pulled by a constant force acting along tangent from the highest point.
Calculate the distance travelled by the COM of the solid sphere during the
time it makes one full revolution.

For linear motion,
F=ma )
For angular motion,

FR. :[ngQJOL
5

__°F (i)

o=
2mR
1 .2
0=0,t+—at
2
tQ _ 8mtmR
5F
Distance covered by the sphere during one full rotation

s:utJrlat2 = O+l F |[8mmR
2 2{m 5F
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A uniform hollow sphere of mass m =1 kg is placed on the rough horizontal
surface for which coefficient of static friction between the surfaces in con-
tact is p = 2/5. Find maximum constant force which can be applied at highest
point in the horizontal direction so that sphere can roll without slipping.
(Take g = 10 m/s?)

For linear motion
F+f=ma () F
for angular motion

(F—ﬂR:(ngja (i)

for pure rolling a = Ra ...(iii)
From equation (i), (ii) & (iii)
F+f 3
F-f 2
= F=5f
Fmax = Sfmax

Fa = 5UmMg = 20 N.

ma.

A uniform rod having mass 'm' and length 'L’ lies on a smooth horizontal sur-

face. A particle of mass 'm,' moving with the speed 'u' on the horizontal sur-

face strikes free rod perpendicularly at an end and it sticks to the rod.

(a) Calculate velocity of the COM 'C' of the system constituting “the rod plus
the particle”.

(b) Calculate the velocity of the particle w.r.t. 'C' before the collision.

(c) Calculate the velocity of the rod w.r.t. 'C' before the collision

(d) calculate the angular momentum of particle and of the rod about the com
'C' before the collision.

(e) Calculate the moment of inertia of rod plus particle about vertical axis
through centre of mass 'C' after the collision.

(f) Calculate velocity of the com C and the angular velocity of the system
about the centre of mass after the collision.
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Sol:

L L, Vo
m2
Initial Final
(@ P,=my
P]c = (m1 + mz)ch
m,v = (m1 + mz)ch
m,Vv
Vo= —2
em [m1+m2J
(b) V' =(U—-v,)
m,u m,u
v'i=v-— 2 _ 1
m, +m, m, +m,
-m,u
0 v (]
m, +m,
m (O)+m E
! 2{2 m,L
d) X, = =
(m1+m2) 2(m1+m2)
L'_E_m—QL = L'_lm—1l_
2 2(m1+m2) 2{m, +m,

momentum of particle

= P=[m,(u-V,,)L']=m,

m,L G MU ) m,mZulL
2(m, +m,) m,+m, ) | 2(m, +m,)

Momentum for rod = MV X Lo =

cm 2
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(e) For particle

2,2

m,m:L

_ 2 _ 2 1
I1_m2L— 5
4(m1+m2)

2

m. L2 m. L

_ 1 2

2 = 12 T 2(m1+m2)

=1 +1,
m, (m1 + 4m2)L2

12(m1 + mz)

(f) Velocity of centre of mass

m1 + m2

Using angular momentum conservation

m2v x I‘cm = Icm(‘O
=m,u ML =_.o

2 2(m1 + mz) em

m.L m, (m1 +4m, ) L2
=m,u = X ®
2(m1+m2) 12(m1+m2)
6m,v
= o=
(m1 +4m, ) L
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Mind Map

ROTATIONAL MOTION
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ROLLLING OVER A PLANE SURFACE

ay roll or slips depending on torque produced by force.
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ROTATIONAL MOTION
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