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Kinetic Theory of Gases

Pressure:
 

  P = 
F
A

 

= 
Component of force perpendicular to surface(F )

Magnitude of area (A)
  

  Unit = N/m2 or Pascal (Pa).
  Pressure is scalar quantity.
  1 atm = 1.01325 × 105 Pa = 105 Pa
  Dimension = [ML–1T–2]

Volume:
  Volume is the quantity of three-dimensional 

space enclosed by a closed surface, for example 
the space that a substance (solid, liquid, gas or 
plasma)

  Unit = m3

  1 litre = 10–3 m3

  1000 lit = 1 m3

  1 cc = 10–6 m3

Density ():
  Density is measure of mass per unit of volume. 

 
m
V

  Unit → kg/m3 or gm/cc. 

  Density of water = 1000 kg/m3 = 1 gram/cc.

Some important points:
  m = mass of each molecule of gas.
  M = Total mass of gas sample.
  Mw = Molecular weight e.g.- H2 = 2 gm/mol, He = 4 

gm/mol, O2 = 32 gm/mol.
  N = Total number of molecule in gas sample.
  n = Total number of mole in gas sample.
  Na = Avogadro number = 6.023 × 1023.
  K = Boltzmann constant (K = 1.38 × 10–23 J/K). 
  R = Universal gas constant (R = 8.314 J/mol 

K = 
25
3

 J/mol K, R = 1.98 cal/mol K   2 cal/mol K).

Concept Reminder

Units of pressure 
1 atm = 1.013 × 105 Pa 
1 bar = 105

1 torr = 133 Pa 

Key Points

  Pascal
  Density
  Atmospheric pressure

Concept Reminder

Relative density =
density of substance

density of water at 4°C  

Rack your Brain

When a Vander Waal’s gas 
undergoes free expansion then 
its temperature.
(1) Decreases
(2) Increases
(3) Does not change
(4)  Depends upon the nature of 

the gas
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Ideal Gas Equation:
 PV  nRT

 P = pressure, n = number of moles 
 V = volume, K = gas constant, 
 T = absolute temperature 

Case-I:

 
w

M
PV RT

M
  Þ 

W

M RT
P

V M


 Þ 
w

RT
P

M




Case-II:

 
a

N
PV RT

N
  Þ 

a

NRT
PV

N


Þ PV NKT

If we move in upward direction in atmosphere 
then pressure is decrease in exponential form.

Assumption of ideal gas:
1. Assumption regarding the molecule: 

  Every gas consists of extremely small particle 
known as molecules. The molecules of given 
gas are all identical but are different than those 
another gas.

  The molecules of an ideal gas are identical, 
spherical, rigid and perfectly elastic point masses.

  The size is negligible in comparison to inter 
molecular distance (10–9 m)

2. Assumption regarding volume:
  The volume of molecule is negligible in comparison 

to the volume of gas.

Concept Reminder

The temperature at which volume 
of an ideal gas becomes zero is 
called critical temperature. 

Rack your Brain

Two vessels separately contain 
two ideal gases A and B at the 
same temperature the pressure 
of A being twice that of B. Under 
such conditions, the density of 
A is found to be 1.5 times the 
density of B. Then fi nd the ratio 
of molecular weight of A and B.

Key Points

  Universal gas constant
  Avogadro number
  Boltzmann constant



3. K
in

et
ic

 T
h
eo

ry
 o

f 
G

as
es

3. Assumption regarding motion:
  Molecules of ideal gas keep on moving randomly 

in all possible direction with all possible speed.
  The speed of gas molecules lie between zero and 

infi nity (very high speed).

4. Assumption regarding collision:
  The molecules of ideal gas keep on colliding 

among themselves as well as with the walls of 
containing vessels. These collisions are perfectly 
elastic (i.e. total kinetic energy before collision = 
total kinetic energy after the collision)

  Molecules of gas move in a straight line with 
constant speed between two successive 
collisions.

  The distance covered by the molecule between 
two successive collisions is known as free path 
and mean of all the path is known as mean free 
path.

Mean free path: The path transversed in a 
straight line by a molecule of a gas between two 
successive collision is called mean free path. 

21
3 4

1 2 3 4....

N

       
 

Þ 
2

1 N P
n'

V KT2 n'd

 
    

  

  The time taken in a collision between two 
molecules is negligible in comparison of time 
to travel distance between two consecutive 
collisions.

  In a gas the number of collisions per unit volume 
remains constant.

Concept Reminder

Unit of gas constant 
 = Joule mol–1 k–1

Dimension 
 =  1 2 2 1 1ML T mol k    

Rack your Brain

The mean free path of molecules 
of a gas, (radius r) is inversely 
proportional to-
(1) r

(2) r  
(3) r3

(4) r2 
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5. Assumption regarding force:
 No attractive or repulsive force acts between gas molecules i.e. potential 

energy = 0.
 Gravitational attraction on the molecules is ineffective due to extremely 

small masses and very high speed of molecules.

6. Assumption regarding pressure:
 Molecules in gas constantly collide with the walls of container due to which 

their momentum changes. This change in momentum is transferred to 
walls of the container consequently pressure is exerted by gas molecules 
on walls of container.

7. Assumption regarding density:
 The density of gas is constant at all points of the container.

Ex.  In a vertical open vessel an ideal gas is fi lled and it is enclosed by 
a piston of mass 4 kg and cross-section area is 2 cm2 then fi nd out 
pressure applied by gas on piston in equilibrium.

Sol. F = mg = 40 N
 A = 2 cm2 = 2 × 10–4 m2

5 2
4

F 40
P 2 10 N / m 2atm

A 2 10
    


 = 2P0

 Pgas = P0 + 2P0 = 3 P0

Ex.  An ideal gas fi lled in closed vessel at 27°C temperature if gas is heated 
then its pressure is made 2 times. Then fi nd out the fi nal temperature 
of gas.

Sol. Closed vessel, V = constant

1 1
2

2 2 2

P T P 300
T 600K

P T 2P T
    

Ex.  In a close vessel temperature of gas is increased by 4°C then fi nd out 
the initial temperature of gas when pressure is increased by 2%.
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Sol. PV = nRT   P  T,   (V = constant)
P% = T%  T = 4°C = 4 K

 2% = f i

i

T T
100%

T


 

i

4
2 100

T
 

iT 200K 73 C   

Ex. If density at point A is , then fi nd out density at point B for given curve

Sol. P = 
w

RT
P T

M


  

0 0i i i A

f f f 0 B 0

P TP T

P T 4P 3T

 
   
 

B

4
P

3
 

Ex.  An insulating closed vessel is divided in two 
parts by on movable piston as shown in 
fi gure.

(i)  Find out ratio of number of molecule in both 
part.

(ii)  If piston is freely moving with isothermal 
process then fi nd out the volume of both 
part in equilibrium.

Sol. (i) PV = NKT

      1 1

2 2

NKT NPV 1
(2P)(3V) N KT N 6

  

Rack your Brain

If pressure of CO2 (real gas) in 

a container is 
2

RT a
P

2V b 4b
 


, 

then fi nd mass of the gas in the 
container. 
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 (ii) 

      PV = NKT

     1 1 1 1 1

2 2 2 2 2

PV NKT V N 1
P V N KT V N 6

   

      1

1 4V
V 4V

7 7
  

      2

6 24V
V 4V

7 7
  

Ex.  In a close vessel H2 gas is fi lled at ‘T’ temperature. If its temperature 
is made 2 times then 50% H2 gas is dissociates in atoms then fi nd out 
fi nal pressure of gas when initial pressure is P0.

Sol. 

2

2 2

 PV = nRT    P  nT

0
f 0

f

P nT
P 3P

3P
n(2T)

2

  

 H2  H + H

ww w

2MM M
n n'

MM M
2

   

Þ n’ = 2n

Ex.  A bubble start rising from the bottom of a lake and reach on surface 
then its volume is made 5 times then out the depth of lake when 
temperature of bottom and surface is same.

Sol. 

 PV = nRT, PV = constant,
 P

i
V

i
 = P

f
V

f
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Þ 0 0 0 0(P gh)V (P ) 5V   

0 0gh 5P P   Þ 0gh 4P 

 1000 × 10h = 4 × 105

Þ h = 40m

  Note: h 10(n 1)   (If temperature is 

constant then depth of length). Where n is 
times of volume.

 h = 10(5 – 1) = 40 m

Ex.  In the above question if radius of bubble 
is made 2 times then fi nd out the depth of 
lake.

Sol.  V = 3 34
R V R

3
   ,   Vf = 8V

  h = 10(8 – 1) = 70 m

Laws of Gases:
1.  Boyle’s law:  At constant temperature for 

constant mass of the gas.
T constant

PV nRT PV constant  

  
1

P
V



   

Concept Reminder

When T = Constant
1

P
V



PV = C

1 2

2 2

P V
P V


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Ex.  Compare the temperature in given isothermal curve.

Sol. PV = nRT Þ P  T
 P2 > P1 Þ T2 > T1

     T3 > T2 > T1

2.  Charle’s Law: At constant pressure for 
constant mass of the gas.
P constant

 Þ PV = nRT Þ V  T,  1 1

2 2

V T
V T



     

              

Key Points

 Boyle’s law
 Isothermal

Concept Reminder

Rack your Brain

A gas at 27°C temperature and 
30 atm pressure is allowed 
to expand to the atmospheric 
pressure. If the volume becomes 
10 times its initial volume, then 
calculate the fi nal temperature.

When P = Constant
V T
V

C
T


T C  

1 1 2 2T T  
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Ex.  For given curve compare the pressure at point A and B?

Sol.  V  T = P = constant,

  Slope (m) 
1
P



  A > B

Þ Slope of A(mA) > Slope of B(mB)
Þ PB > PA

3. Gay-lussac Law:
 At constant volume for constant mass of gas.

V constant Þ PV = nRT  Þ P  T

     

 Pressure and volume never be negative.
 Temperature in Kelvin is never be negative but temperature in °C may be 

negative.
 0°K temperature is called absolute Kelvin temperature.

Ex. For given curve, compare the volume.

Key Points

 Charle’s law
 Isobaric

Concept Reminder

When V = Constant
P T

1 2

1 2

P P

T T

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Sol. P  T  V = constant

 Slope (m) 
1
V



 m = tan  Þ 
2
 > 

1

Þ m
2
 > m

1 

 V
1
 > V

2

4. Avogadro Law:
 According to this law at same pressure, same 

volume and same temperature number of 
molecules are same.

 At NTP number of molecules in 1 mol is 
23

AN 6.023 10  .

5. Grahm’s Law of Diɬ usion:-
 When 2 gases at the same temperature and 

pressure are allowed to diffuse into each other, 
then rate of diffusion of each gas is inversely 
proportional to the square root of the density of 

the gas, i.e. 
1 1

r
M

 


 (M is the molecular 

weight of the gas)  1 2 2

2 1 1

r M

r M


 


. 

6. Daltons Law:
 According to this law total pressure of gases mixture is equal to sum of 

partial pressure of gases.

mixP n

total 1 2 3P P P P .....   

Ex.  Plot P-V, T-V graph corresponding to the P-T graph for an ideal gas 
shown in fi gure.

Key Points

 Isochoric
 Absolute 

If V is the volume of gas diffused 
to t sec then 

1 1 2

2 2 1

r V tV
r

t r V t
   
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Sol. 

(i) A  B
  PV = nRT, V = constant
  P  T(k)
  T , P  , V = constant

 (ii) B  C
  PV = nRT, P = constant
  V  T(k)
  T , V  , P = constant

 (iii) C  A
  PV = nRT, T = constant

  P 
1
V

  P , V  , T = constant

By graph:
(i) P and V  (ii) T and V
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Ex.  Plot P-T, T-V graph corresponding to the P-V graph for an ideal gas 
shown in fi gure.

Sol. 

 (i) A  B (ii) B  C
  PV = nRT,  PV = nRT,  T = constant

  P = constant    P 
1
V

  V  T
  V , T    V , P 

 (iii) C  D (iv) D  A
  PV = nRT  PV = nRT
  P = constant  T = constant

  V  T  P 
1
V

  V , T    V , P 

P and T
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T and V

Ex.  Plot P-T, T-V graph corresponding to the P-V graph for an ideal gas 
shown in fi gure.

Sol. 

 (i) A  B (ii) B  C
  PV = nRT,  PV = nRT,  
  P = constant   T = constant

  V  T  P 
1
V

  V , T    V , P 

 (iii) C  D (iv) D  A
  PV = nRT  PV = nRT
  V = constant  T = constant

  P  T  P 
1
V

  P , T    V , P 
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P and T 

T and V

Pressure exerted by gas molecules on the wall of container:

Pressure (P) = 
F

A
 , 

dP
F

dt





x y z
ˆ ˆ ˆv v i v j v k  



2 2 2
x y z| v | v v v  


 2 2 2 2

x y zv v v v  
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P = – 2 mv0

\  avg

p
F

t





 = 2 mvx × (collision frequency)

     
x

2l
t

v

 
  

 

 = x
x

2mv
v

2l
 Þ

2
xmv

F
l



1 2

2 2
0 x 0 x

totalavg 1 2

m v m v
F F F ..... ...

l l
     

20
avg x x

m
(F ) ( v )

l
 

1

1

2
x 20 0

x2 2 3

vm m(F)
P v

ll l l



    

Let, vx = vy = vz
2

2 2 2
x x

v
v 3v v

3
  

i

2 2
0 x 0 i

3 3

m v m v
P P

l 3l

 
  

  
2

0 im N v
P

3V N

 
  
 
 

mean square velocity = 
2 2
1 2v v ....

N

 

  2m
P v

3V
  

21
P v

3
  

2 2
1 2

rms

v v ....
v

N

 


Formula’s Reminder

Pressure inside the container

2
rms

2
rms

1 mN
P V

3 V
1

V
2



 

Vrms = 

3nRT

m

      

3P 3PV
M

 


      

3kT

m


Average Speed for Gas:

avg
w

8 RT 8 P
v

M

8 PV 8 KT
M m

 
  

 
 

Most Probable Speed:

mp
w

2RT 2P
v

M

2PV 2KT

M m

 


 
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rmsv v    Þ 2

rms

m
P v

3V
 

 PV = nRT Þ 2
rms

m
PV v

3


Þ 2
rms

m
nRT v

3


  rms

3nRT
v

m


SPEED OF GAS:
1. Root mean square speed [vrms]:

 rms
w

3RT 3P 3PV 3KT
v

M M m
   



Note:  If vrms > vescaped then gases are escaped from 
planet i.e. atmosphere is not present at 
that planet (eg. moon)

    If vrms < vescaped then gases are not escaped 
it means atmosphere is present. (eg. earth)

    At T = 0 K then vrms = 0, at which molecular 
motion stop.

    If pressure increases then vrms  no 
comment because it also depends on 
density ().

    If temperature increases then vrms increases.
    At constant temperature, if pressure 

increases then vrms constant.
2. Average velocity: avg[ v and v ] 

 

 1 2 3 N
avg

v v v .... v
v

N

   


   


3. Average speed: avg[ | v | or | v |] 
 

 1 2 3 N
avg

v v v ..... v
v

N

   


 For gas: 

 avg
w

8 RT 8 P 8 PV 8 KT
v

M M m
   

    

4. Most probable speed [vmp]:
  Most of the gas molecules will be move with 

speed is called most probable speed.

Key Points

  rms speed
  Average speed
  Most probable speed

Rack your Brain

Gas at a pressure P0 in contained 
is a vessel. If the masses of all 
the molecules are halved and 
their speeds are doubled, then 
calculate the resulting pressure 
P. 
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mp
w

2RT 2P 2PV 2KT
v

M M m
   



Some Important points:

1. avg rms mp
w w w

3RT 2RT8 RT
v , v , v

M M M
  



avg rms mp

8
v : v : v : 3 : 2



2. rms avg mpv v v  .

3. For all types of speed v T .

4. For one molecule

rms avg mpv v v for 1 molecule 

Ex.  Find out the temperature of oxygen at which vrms of oxygen is equal to 
vrms of hydrogen at 27°C.

Sol. 
2 2rms rms O rms H

w

3RT
v (v ) (v )

M
  

2O3RT 3R(300)

32 2


Þ
2OT 4800K

Ex.  If mass of gas is double and vrms is half then pressure of gas will be.

Sol.  2
rms

1
P v

3
 

  2 2
rms rms

1 M
P v P Mv

3 V
  

  
2

1 1
P ' 2 P '

2 2

 
   

 
 times.

MAXWELL CURVE OF VELOCITY:

Concept Reminder

Effect of temperature of velocity 
distribution.
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dN
dv

  Number of molecules in unit speed 

interval.

Area = 
dN

dv dN
dv

  , dN = number of molecules 

present in dv speed interval.

Area covered by 
dN
dv

 versus v curve on speed axis 

is represent the total number of molecule in gas 
sample.
dN is a number of particles whose speed is 
between the range v to (v + dv).

mp
0

2RT
v

m


2
3/2

mv /2KT2dN M
4 N v e

dv 2 KT
 

     

Some commonly used terms:
 No heat exchange between gas and out side surroundings.

 Heat exchanges between gas and surrounding 
and fi nally temperature become same.

 Piston (conducting):
– Movable  temperature and pressure both same.
Fix  temperature same.

 Piston (non-conducting)
– Movable  pressure same.
– Fixed  then it is different chamber (no comment)

Rack your Brain

At what temperature will the 
rms speed of oxygen molecules 
become just suffi cient for 
escaping from the Earth’s 
atmosphere (Given: mass of 
oxygen molecule (m) = 2.76 × 
10–26 kg, Boltzmann’s constant 
kB = 1.38 × 10–23 JK–1) 

Key Points

 Adiabatic wall
 Heat
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

 When heat exchange is slow as compared to the conducting walls.

Degree of freedom (Dof):
 It is the number of modes by which a gas particle can keep energy this 

mode of keeping of energy by a gas molecule is called degree of freedom.
For all type of gas = Tf 3  (Dof)

Monoatomic; Ex. – He, Ar  Dof = 3 
    (vx, vy, vz)
Diatomic;  Ex. – H2, O2, N2 = Dof = 5 
    (vx, vy, vz, wx, wy)
Triatomic;  Ex. – CO2, O3, H2O 
– Linear  Dof = 5 (vx, vy, vz, wy, wz)
– Non-linear  Dof = 6 (vx, vy, vz, wx, wy, wz)

Concept Reminder

A diatomic molecule that free 
to vibrate will have 7 degrees of 
freedom. 
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T = Translational energy, R = Rotational energy, 
V = Vibration energy

 If higher temperature particles starts vibrating 
about their mean position than add to 2 vibrational 
energy.

2
rms

1
P v

3
  Þ 2

T rms

1
PV M v

3


2
PV K.E.

3
 Þ 3 3

KE PV nRT
2 2

 

Average KE of one mole = 
3

RT
2

Average KE of one molecules = 
A

3 RT 3
KT

2 N 2
 

  = 

3KT
2

x
1v KT
2

=

y

1
v KT

2
=

z
1v KT
2

=

Maxwell’s equipartition law:
 Maxwell’s equipartition law states that every 

degree of freedom of a molecules carries same 

energy and that is equal to 
1
KT

2
.

One molecule energy = 
f
KT

2

One mole energy = 
f
RT

2

n mole energy = 
f

nRT
2

Internal energy (U) 

= 
f

KE PE nRT
2

   (Potential energy = 0)

Rack your Brain

Find the ratio of the specifi c 

heats p

v

C

C
   in terms of degrees 

of freedom (n).

Key Points

 Equipartition law
 Average kinetic energy

Concept Reminder

Different energies of a system of 
degree of freedom f are as follows: 
1.  Total energy associated with 

each molecule = 
f

kT
2

.

2.  Total energy associated with N 

molecules = 
f
NkT

2
.

3.  Total energy associated with 1 

mole = 
f

RT
2

.

4.  Total energy associated with 

moles = 
f

RT
2
 .

5.  Total energy associated with 

each gram = 
f

rT
2

.

6.  Total energy associated with 

m grams = 
f

mrT
2

.
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Ex.  Find out the translatory kinetic energy of He 
gas molecules 3 × 1022 at 27°C.

Sol. U = nCvT;  
22

23

3 10 1
n

206 10


 



 U = 
1 fR 300 3 300 2

20 2 40
  

 

    = 
90 2

45cal
4




Ex.  Find out the total kinetic energy of 1 molecule 
of a gas at NTP.

Sol.  Total kinetic energy of 1 molecule of gas = 

A

f RT
2 N

 
  
 

 = 23 23
23

3 2 273 273
10 136.5 10 cal

22 6 10
  

   
 

Ex.  For 1 kg diatomic gas pressure is 8 × 104 Pa 
and density is 4 kg/m3 then fi nd out total 
internal energy of gas.

Sol.  U = nCvT Þ 
w

M fRT
U

M 2


 Þ 
w

Mf RT Mf P
U U

2 M 2

   
         

  
w

P RT
M

 
   

 

  U = 
4

41 5 8 10
5 10 J

2 4
  

 


Ex.  If temperature of gas is change from 27°C 
to 927°C then fi nd out percentage change in 
internal energy of gas.

Sol. U T  

 Þ i i

f f f f

U T 100 300 100 1
U T U 1200 U 4

    

  Uf = 400

 % change in U = 
400 100

100 300%
100


 

Rack your Brain

The molar specifi c heats of an 
ideal gas at constant pressure 
and volume are denoted by Cp 

and Cv, respectively. If 
p

v

C

C
   and 

R is the universal gas constant, 
then fi nd C

v
.
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Ex.  For a gas at 300 K temperature energy is 300 J and speed is 300 m/
sec. If temperature is made 2 times of initial then fi nd out the fi nal 
energy and speed.

Sol. U T

 i i

f f f

U T 300 T
U T U 2T

     fU 600J 

 v T

 i i

f f f

v T 300 1
v T v 2

     fv 300 2 m / sec   

Ex.  64 gm oxygen gas fi lled in a closed vessel at 27°C. temperature then 
fi nd out that how much heat is require to increase its most probable 
speed 2 times. 

Sol. Closed vessel, V  constant,

 vQ nC T   ,  
w

M
n

M
 ,  v

5R
C

2


 mpv T   Þ  iT 27 C 300   K

  
2

i
f i

f

T v
T 4T

T 2 v

 
    
 

 Þ fT 4 300 1200K    

  fT 1200K  Þ T 900K 

  
5R64

Q (900)
32 2

    Q = 9000 cal

Ex.  In an ideal gas at constant volume, pressure is made 2 time and after 
that at constant pressure volume is made 2 times then fi nd out the 
specifi c heat in complete process.

Sol. Case-I: V = constant Case-II: P = constant
 P T    V T

 
P T
2P T '

    
V T '

2V T ''


 T ' 2T    T '' 2T ' 4T 
 Now specifi c heat is,
 1 2Q Q Q    Þ  v 1 PnC T nC T nC T    

 
3R 5R

C(4T T) [2T T] [4T 2T]
2 2

    

 
3RT 10RT 13R

C[3T] C
2 2 6

   

Rack your Brain

Calculate the amount of heat 
energy required to raise the 
temperature of 1 g of Helium at 
NTP, from T1K to T2K.
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Ex.  Same amount of same diatomic gas fi lled in 
two vessel A and B. A vessel is unclosed by 
a movable piston and B vessel is unclosed 
by fi xed piston then same amount of 
heat is given in both vessel then vessel A 
temperature is increased by 20°C then fi nd 
out the temperature change of vessel B.

Sol. A, P = constant (C
p
), B, V = constant (C

v
)

 Q
1
 = nC

P
T

1
   Q

2
 = nC

v
T

2

 Q
1
 = Q

2
  Þ 2n7R 5R T

(20) n
2 2




 2T 28 C  

Ex.  For hydrogen gas gram specifi c heat is Cp – Cv = 
x
2

 and for oxygen gas 

gram specifi c heat is Cp – Cv = 
y
8

 then fi nd out 
x
y

.

Sol. H2  Cp – Cv = 
x
2

  
w

R R x
M 2 2

   x R   

 p v
w

R
C C

M
   (for gram specifi c heat)

 2 p v
w

y R R y
O C C

8 M 32 8
       

R
y

4
   

 Þ 

R
x x1 4

Ry y
4

    

Gases Mixture:

mix 1 2 3M M M M ........   

mix 1 2 3n n n n ........   

mix 1 2 3U U U U ........   

1 21 w 2 w
w mix

1 2

n M n M ....
(M )

n n ....

 


 

1 21 v 2 v

v mix
1 2

n C n C ....
(C )

n n ....

 


 

1 21 P 2 P
P mix

1 2

n C n C ....
(C )

n n ....

 


 

Rack your Brain

One mole of an ideal monoatomic 
gas undergoes a process 
described by the equation PV3 = 
constant. Then fi nd the heat 
capacity of gas during this 
process.
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1 2

1 2

1 P 2 PP
mix

v v vmix

n C n C ....C

C nC nC ....

  
       

1 2

1 2

1 v 1 2 v 2

mix
v v

n C T n C T ....
T

nC nC ....

 


 

For same atomic gas:

1 2v vC C

1 1 2 2
mix

1 2

n T n T
T

n n






Ex.  1 mole He gas and 1 mole H2 gas are mixed together then fi nd out 
the mix.

Sol. 1 2

1 2

1 P 2 P
mix

1 v 2 v

n C n C

n C n C


 


 = 

5R 7R
1 1

2 2
3R 5R

1 1
2 2

  

  

       = 

5R 7R 12R
122 2 2 1.5

3R 5R 8R 8

2 2 2


  



Ex.  2 mole He gas and 4 mole O2 gas are fi lled at temperature the fi nd 
out Umix.

Sol. Umix = U1 + U2 Þ U = nCvT

mix

3R 5R
U 2 T 4 T

2 2

   
       

   

 = 3RT 10RT Þ mixU 3RT 10RT 

 = 13 RT

Pallet Problem:
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atm 1 2 HgP P P h g   

51 10 h 13600 10   
h = 76 cm  (Barometer)

Ex.  Find out pressure of gas (Pgas) and new length of gas column in tube if 
tube is inverted.

Sol. Initially, Pgas = 20 cm of Hg + 75 cm of Hg

  P
gas

 = 95 cm of Hg

 Finally, P0 = Pgas + 20 cm of Hg

  75 = Pgas + 20 cm of Hg

  P
gas

 = 55 cm of Hg

  P1V1 = P2V2

Þ 95 × 60 × A = 55 × y × A

  y = 103.63 cm
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Ex.  Find the new length of gas column in tube if tube is inverted (assume 
temperature is constant)

Sol. Initially:
  gas gasP 10 75 P 65   

 Finally:
  gas gas75 10 P P 85cm   

  1 1 2 2PV P V

  
1950

85 A l 65 30 A l
85

        cm

Ex.  Find the new length of gas column in tube if tube is rotated at an angle 
60° as shown. (Assume constant temperature)

Sol. Pgas = 75 – 20 = 55 [P + 20 cos 60° = 75]
1

P 20 75
2

        P 75 10  = 65 

1 1 2 2PV P V   Þ 55 × 40 × A = 65 × l × A

Þ  l = 
55 40

65


cm

Ex.  Assume constant temperature if the tube is changed to vertical position 
and the pallet comes down by 5 cm then fi nd out P0.
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Sol. For upper part
  1 1 0 0PV P V Þ 1 0P 35A P 30A

Þ 1 0

30
P P

35
    ...(i)

 For lower part
  2 2 0 0P V P V

Þ 0 2P 30A P 25A             

Þ 2 0

30
P P

25
    ...(ii)

 Again
  1 2P 40 P     ...(ii)

 From (i) and (ii),

  0 0

30 30
P 40 P

35 25
  0

1 1
40 30P

25 35

 
   

 

Þ 0

4 10
P

3 25 35

 
   

0

4 25 35 700
P

10 3 6
 

  

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Boyle’s Law:
“For a gas which having suffi ciently low density, 
its pressure in inversely proportional to its 
volume, at constant temperature.”

 
1

P
V

    PV = constant

  P1V1 = P2V2

(A) But volume 
m

V 


 From equation (1),

 
m

P
 

   
 constant

 If mass m is constant, then 
P



 

constant 1 2

1 2

P P
 

 

(B) Number of molecules in unit volumeN N
n V

V n
     from equation (1),

 
N

P
n

 
 

 
 constant

 If N is constant then, 
P
n
  constant 

 1 2

1 2

P P

n n
    c 

Charle’s Law:-
“For a gas having suffi ciently low density, if 
pressure is constant, then its volume is directly 
proportional to its absolute temperature.”

 V T     
V
T
  constant  

1 2

1 2

V V

T T
 

(A) But density 
m m

V
V

   


; m = constant

 So, 
m
T



 constant 

1 1 2 2T constant T T     
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(B) For a given gas at constant pressure, volume 
at 0°C is V

0
 then Volume at t °C is

 t 0

t
V V 1 .

273.15

 
  

 

Gaylussac’s Law:-
“For a gas having suffi ciently low density, if 
volume is constant, then its pressure is directly 
proportional to its absolute temperature.”

 P T     
P
T
  constant  

1 2

1 2

P P

T T
 

(A)  For a given mass of gas, if volume is constant 
and pressure at 0°C is P0 so pressure at t °C 
is

 t 0

t
P P 1

273.15

 
  

 

Avogadro’s hypothesis:
“For given constant temperature and 
pressure, number of molecules per 
unit volume is same for all gases.” 
Number of molecules in 1 mole gas is NA = 
6.023 × 1023

Graham’s law for gas expansion:
“If two different gases are mixed at constant 
temperature and pressure, then rate of mixing is 
inversely proportional to square root of density 
of gas.”

 
1

r ,  


 density

 
1

r , M
M

   Molecular mass of gas

 1 2 2

2 1 1

r M

r M


  



If volume V of given gas mixes in time t then

 
V

r
t


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 1 1 2

2 2 1

r V t

r V t
 

Ideal Gas Equation:
PV RT     for   mole gas

A

R
PV T

N

 
   
 

  for 1 mole gas

     = k
B
T   

23 1
B

A

R
k 1.38 10 JK

N
      Boltzmann’s 

Constant
    = Nk

B
T   for N molecules

  
R

PV T
M

 
  
 

  for 1 g gas

        PV = rT  where, r = specifi c Gas 
constant
        PV = mrT  for m g gas.

        where 
R

r
M

   Gas constant per unit mass.

        unit of r = Jg–1k–1 

Van-der-waal’s correction:
(A) Correction in Volume: (V – b)

 Where c

c

RT1
b

8 P


(B) Correction in pressure: 
2

a
P

V

 
 

 
 

 Where 
2 2

c

c

R T27
a

64 P


Where Pc = Critical pressure, Tc = Critical 
temperature & Vc = Critical volume.

For one mole gas  2

a
P V b RT

V

 
   

 

for   mole gas  
2

2

a
P V b RT

V

 
      

 

Pressure of Gas:
 PV = NkBT
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 N = Number of molecules

 B

N
P k T

V


 P = nk
B
T 

Where 
N

n
V

   Number of molecule in unit 

volume.
 PV RT 

 
0

M
PV RT

M
   

0

Mass of gasM
M Molecular mass of gas

  

 
0

M R
P T

V M


 
0

RT
P

M


   

where 
M
V

    Density of gas

 21
P v

3
     where 2 2 2 2

x y zv v v v    

  2 2 2 2
x x xv v v v          

 rms

3P
v 


  

where 
M
V

    Density of gas

 21
P v

3
    , where 2 2 2 2

x y zv v v v    

 2 2 2 2
x x xv v v v          

 rms

3P
v 


, 2 2

xv 3 v   

Where 2
rmsv v  

        B3k T

m
  

where m = mass of one molecule.
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0

3RT
M

  

where M0 = molecular mass

Internal energy int

f
E RT

2
 

Here f = Degrees of freedom
Monoatomic gas (He, Ne, Ar, …..) f = 3
Diatomic gas (H2, O2, N2, …..)     f = 5 (Rigid 
rotator)
 CO2   f = 7
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EXAMPLES

The rms speed of H2 molecules of an ideal H2 gas kept in a gas chamber at 0°C 
is 3180 m/s. Find the pressure of the hydrogen gas.
(Density of hydrogen gas is 8.99 × 10–2 kg/m3, 1 atmosphere = 1.01 × 105 N/m2)

A cylinder contained 10 kg of gas at pressure 107N/m2. If fi nal pressure is 2.5 × 
106 N/m fi nd the quantity of gas taken out of cylinder (assume the tempera-
ture of gas is constant).

A fi sh released an air bubble of volume V0 at a depth h in a lake. The bubble 
comes to the surface. Take constant temperature and standard atmospheric 
pressure P above the lake. Calculate the volume of the bubble just before 
touching the surface (density of water is  , gravity = g).

Q1

Q2

Q3

As    22 2
rms

1 1
P v 8.99 10 3180

3 3
    

    = 3.03 × 105 N/m2 = 3.0 atm.

At constant T for the given volume of gas

 1 1

2 2

P m

P m


Þ 
7 6

26 7
2

10 10 2.5 10 10
m 2.5 kg

m2.5 10 10

 
   



Amount of gas taken out of the cylinder
         = 10 – 2.5 = 7.5 kg.

According to Boyle’s law product of pressure and volume will remains constant 
at the top and bottom.
If P is the atmospheric pressure at the top of lake and the volume of bubble 
is V then from P1V1 = P2V2

  0 0

P h g
P h g V PV V V

P

  
      

 

Sol.

Sol.

Sol.
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A gas is fi lled in the cylinder shown in given fi gure. The 2 pistons are joined by 
a string. If the gas is heated, the positions will

At 0°C pressure measured by barometer is 760 mm. What will be pressure at 
100°C?

The capacity of a vessel is 3 litres. It contains 6 gram oxygen, 8 gram nitrogen 
and 5 gram CO2 mixture at room temperature (27°C). If R = 8.31 J/mole kelvin, 
then fi nd the pressure in the vessel in N/m2.
Hint : Use gas equation

Q4

Q5

Q6

If temperature of gas increases then it expands. As cross-sectional area of 
right piston is more, so that greater force will work on it (because F = PA). So 
position will move towards right.

From Gay Lussac’s low 2 2

1 1

P T 100 273 373
P T 0 273 273

 
    

2

373
P 760 1038 mm.

273

 
    

 

Dalton’s law

31 2
1 2 3

31 2
1 2 3

1 2 3

RTRT RT
P P P P

V V V
mm mRT RT

V V M M M

 
     

 
              

  3

3 3 5 2

8.31 300 6 8 5
32 28 443 10

498 10 500 10 5 10 N / m .



 
   

  
     

Sol.

Sol.

Sol.
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Two gases X and Y has temperature, pressure and volume T, P and V respec-
tively. When these gases are mixed then the volume and temperature of mix-
ture become V and T respectively. Then the pressure and mass of the mixture 
will be

When volume of system is increased two times and temperature is decreased 
half of its initial temperature, then pressure becomes

A fl ask is fi lled with 13 gram of an ideal gas at 27°C and its temperature is 
raised to 52°C. What mass of the gas that must be released to keep the tem-
perature of gas in the fl ask at 52°C and pressure remaining the same.

If the intermolecular forces vanish away, the volume occupied by molecules 
contained in 4.5 kilogram water at standard temperature and pressure will be 
given by

Q7

Q8

Q9

Q10

From Dalton’s law,
Pressure of mixture = P1 + P2 = P + P = 2P 
Same as mass also will become double i.e. 2M.

From PV RT   we get

2 2 1 1 1 1
2

1 1 2 1 1

P T V T / 2 V P1
P

P T V T 2V 4 4

       
                  
       

PV   Mass of gas × Temperature. In this question pressure and volume re-
mains constant so M1T1 = M2T2 = constant

2 1

1 2

2 1

M T 27 273 300 12
M T 52 273 325 13

12 12
M M 13 gm 12 gm

13 13

 
      

     

i.e. the mass of gas released from the fl ask = 13 gm – 12 gm = 1 gm.

Sol.

Sol.

Sol.
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Two ideal gases at temperature T1 and T2 are mixed. There is no loss of energy. 
If masses of molecules of the two gases are m1 and m2 and number of their 
molecules are n1 and n2 respectively. Find the temperature of the mixture.

The velocities of ten particles in ms–1 are 0, 2, 3, 4, 4, 4, 5, 5, 6, 9. Calculate
(1) rms speed
(2) most probable speed

Q11

Q12

Total energy of molecules of fi rst gas 1 1

3
n kT

2
 ,

Total energy of molecules of second gas 2 2

3
n kT

2


Let temperature of mixture be T then total energy of molecules of mixture 

 1 2

3
k n n T

2
 

     
1 1 2 2

1 2 1 1 2 2
1 2

n T n T3 3
n n kT k n T n T T

2 2 n n


     



(1) rms speed,

 

                 
1/2

2 2 2 2 2 2 2 2 2

rms

1/2
1

0 2 3 4 4 4 5 6 9
v

10

228
4.77 ms

10


           
  

 
  
 

(2) most probable speed v
mp

 = 4 m/s

Without intermolecular force water behaves like an ideal gas.
No of moles 

3

Mass of water 4.5 kg
250,

Molecular wt. of water 18 10 kg
   



T = 273 K and P = 105 N/m2 (STP)
From

3
5

RT 250 8.3 273
PV RT V 5.66 m .

P 10

  
     

Sol.

Sol.

Sol.
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Let A and B are the two gases and given :

A B

A B

T T
4. ;

M M


where T and M stands for the temperature and the molecular mass.
If CA and CB are the rms speed for the given gases A and B respectively, then 

the ratio A

B

C

C
 will be.

Find the ratio of rms speeds of the gases in the mixture of nitrogen oxygen.

Find the ratio of specifi c heat at constant pressure to the specifi c heat con-
stant volume for NH3.

Q13

Q14

Q15

As 

A A B
rms

B A B

A A

B B

C T / T3RT
v

M C M / M

T M
4 2 As 4 given

T T

  

 
   

  

We use rms

3RT
v

M


2 2

2 2

N O

O N

v M 32 8
v M 28 7

   

For polyatomic gas ratio of specifi c heat 1.33 

Because we know that as the atomicity of gas increases its value of   de-

creases.

Sol.

Sol.

Sol.
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At constant volume the specifi c heat of a gas is 
3R
2

, then fi nd the value of  .

A gas, is heated at constant pressure. Find the fraction of heat supplied used 
for external work.

The average degrees of freedom per molecule for a gas is 6. The gas performs 
25 J of work when it expands at constant pressure. Find the heat absorbed 
by gas.

Q16

Q17

Q18

Specifi c heat at constant volume v

R 3R
C

1 2
 
 

 (given)

v

5
1 R / C 2 / 3

3
        .

We know fraction of given energy that goes to increase the internal energy is

v

p

Total heat supplied to increase internal energy C 1
Total heat supplied C

  


So we can say the fraction of given energy that supplied for external work 
1

1 . 


As f = 6 (given) 
2 2 4

1 1
f 6 3

      

Fraction of energy for external work 
W 1

1
Q

 
    

25 1 3 1
1 1

Q 4 / 3 4 4

Q 25 4 100 Joule.

 
        
    

Sol.

Sol.

Sol.
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If two moles of diatomic gas and one mole of monoatomic gas are mixed 
with then fi nd the ratio of specifi c heats.

The mean free path of N2 molecules is 0.8 x 10–7m at a pressure of 1.0 atm and 
temperature 0°C. If the number of density of molecules is 2.7 × 1025 per m3, 
then fi nd the molecular diameter.

Q19

Q20

1 1

5
1,

3
     (for monoatomic gas) and 2 2

7
2,

5
     (for diatomic gas)

From formula 

1 1 2 2

1 2
mixture

1 2

1 2

5 7
1 2

3 5
5 7

1 11 1 3 5
1 2

5 71 1 1 1
3 5

5 / 2 7 19
3 / 2 5 13

 
   

     
  

 


     


 



Mean free path   = 0.8 x 10–7 m number of molecules per unit volume n = 

2.7 × 1025 per m3

Substituting these value in 
2

1

2 nd
 



we get 19 10d 1.04 10 3.2 10 m 3.2Å     

Sol.

Sol.
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Mind Map


