NATIONAL ELIGIBILITY CUM ENTRANCE TEST NEET (UG), 2016 Phase-2 (CODE:CC-RR-YY)

1. Which one of the following generates new genetic combinations leading to variation?
-t) Sexual repronuction
(2) Nucellar polyembryony
(3) Vcgctative rcproduction
(4) Parthenogenesis
2. Match Column-I with Column-II and select the correct option using the codes given below

Column-r

a. Pistils fused together
b. Formation of gametes
c. Hyphae of higher Ascomycetes
d. Unisexual female flower

Column-II

(i) Gamctogenesis
(ii) Pistillate
(iii) Syncarpous
(iv) Dikarvotic

Codes

	a	b	c	d
(1)	(i)	(ii)	(iv)	(iii)
(2)	(iii)	(i)	(iv)	(ii)
(3)	(iv)	(iii)	(i)	(ii)
(4)	(ii)	(i)	(iv)	(iii)

3. In majority of angiosperms
(1) reduction division occurs in the megaspore mother cells
(2) a small central cell is present in the embryo sac
(3) cgo has a filiform apparatus κ
(4) there are numerous antipodal cells, x
4. Pollination in water hyacinth and water lily is brought about by the agency of
(1) birds
(2) buts
(3) water
(4) insecits or wind
5. The ovuie of an angiosperm is tecinnically equivalent to
(1) megaspore mother cell
(2) megaspore
(3) megasporangium
(4) megasporophyil
6. Taylor conducted the experiments to prove semiconservative .mode of chromosome replication on
(1) Dioosophila melanogaster
(2) E. coli
(3) Vinca rosea
(14) Vicica faba
7. The mechanism that causes a gene to move from one linkage group to another is called
, (1) transiocation
(2) crossing-over
(3) inversion *
(4) duplication\%
8. The equivalent of a structural gene is (17 operon ${ }^{\prime}$ (2) recon
(2) recon
(3) muton
(4) cistron r
9. A true breeding plant is
(1) near homozygous and produces offspring of its own kind
(I) alwavs homozygous recessive in its genetic constitution
(3) one that is able to brccd on its own "
(4) produced due to cross-pollination among unrelated plants
10. Which of the following rRNAs acts as structural RNA as well as ribozymc in bacteria?
(1) 23 S rRNA *
(2) 5.8 S rKNA
(3) 5 S rRNA
, (F) 18 S IRNA
11. Stirred-tank bioreactors have been designed for
(1) availability of oxygen throughout the process
(2) ensuring anaerobic conditions in the culture vessel
(3) purification of product
(4) addition of preservatives to the product
12. A forcign DNA and plasmid cut by the same restriction endonuclease can be joined to form a recombinant plasmid using
(I) polymerase III
(2.) ligase
(3) Ece kl
(4) Taq polymerase
13. Which of the following is not a comvonent of downstream processing?
(1) Preservation
(2) Expression
(3) Separation
(4) Purification
14. Which of the following sestriction enzymes produces blunt ends?
(1) Xho I
(2) Hind 111
(3) Sal I ${ }^{j}$
(4) Eco RV
15. Which kind of therapy was given in 1990 to a four-year-old girl with adcnosinc dcaminase (ADA) deficiency?
(1) Immunotherapy
(2) Radiation therapy
(3) Gene therapy
(4) Chemotherapy
16. How many hot spots of biodiversity. in the world have been identified till date by Norman Myers?
(1) 34
(2) 43
(3) 1%
(4) 25
17. The primary producers of the deep-sea hydrothermal vent ecosystem are
bluc-green algae -
(2) coral reefs
(3) green algae
(4) chemosynthetic bacteria
18. Which of the following is cerrect for \% r-selected species?
(1) Small mumber of progeny with smali size
(2) Smail number of progeny with large size
(3) Large number of progeny with small size
(4) Large number of progeny with large size
19. If ' + ' sign is assigned to beneficial interaction,

If ' - ' sign to detrimental and ' 0 ' sign to neutral interaction, then the population interaction represented by ' + ' '- refers to
(1) commensalisun
(2) parasitism
(3) mutualism
(4) amensalism
20. Which of the following is correctly matched?
\checkmark (1) Parthenium hysterophorus-Threat to bindiversity
(2) Stratification-Population
(3) Aerenchyma-Opuntia
(4) Age pyramid-Biome
21. Red List contains data or information on
(1) tbreatened species
(2) marine vertebrates oniy
(3) all economically importaint plants
(4) plants whose products are in international trade
22. Which one of the following is wrong for fungi?
(1) They are heterotrophic.
(2.) They are both unicellular and multicellular.
(3) They are eukaryotic.
(4) All tungi possess a purely celiulosic cell wall.
23. Miethanogens belong to
(1) Dinoflagcllates
(2) Slime moulds
(3) Eubacteria
(A) Archaebacteria
24. Select the wrong statement.
(i) Thiatoms are chief producers in the oceans.
(2) Diatoms are ricroscopic and float passively in water.
(5) The walls of diatoms are easily destructible.
(4) 'Diatomaceous earth' is formed by the cell walis of diatoms.
25. The label of a herbarium shccit does not carry information on
(1) local names
(2) height of the plant
(3) date of collection
(4) name of collestor
26. Conifers are adapted to tolerate extreme envirommental conditions because of (1) thick cuticle \checkmark
(2) presence of vessels
(3) broad hardy leaves
(4) superficial stomata
27. Which ore of the following statements is wrong ?
(1) Agar-agar is obtaincd from Gelidium and Gracilaria.
Laminaria and Sargassum arc uscd as fcod?
(3) Algac increasc the level of dissolved oxygen in the immediate environment.
(1) Nigin is obtained from red algae, and carrageeran from brown aigac. -
28. The term 'polyadelphous' is related to
(1) corolla
(2) calyx
(2) gynoccium
(4) and:necium
29. How many plants among Incligofera, Sesbania, Salvia, Allium, Aloe, mustard, grnundnul, radish, gram and turnip have stamens with different lengths in their flowers?
(1) Five
(2.) Six
(3) Three
(4) Four $<$
30. Radial symmetry is found in the flowers of
(1) Pisum
(2) Cassia
(3) Brassica
(4) Trifolium
31. Free-central placentation is found in
(1) Brassica
(2) Citrus
(3) Dianthus
(4) Argemone
32. Cortex is the region found between
(1) cndodermis and pith
(2.) endodermis and vascular bundle
(3) epidermis and stele
(1) pericycle and endodermis
33. The balloon-shaped structures called tyloses
(1) are extensions of xylem parenchyma celis into vessels
(2) are linked to the ascent of sap through xylem vessels
(3) originate in the lumen of vessels
(+) characterize the sapwood -
34. A non-proteinaceous enzyme is
(1) ligasc
(2) deoxyribonuclease
(3) lysozyme
(4) ribozyme
35. Select the mismatch.
(1) Protists---Eukaryotes
(2) Methanogens-Prokaryotes
(3) Gas vacuoles-Green bacteria
(4) Large central vacuoles---Animal cells
36. Select the wrong statement.
(1) Cyanobacteria lack flagellated cells.
(2) Mycoplasma is a wall-iess microorganism. ${ }^{\prime}$ pepticoglycan.
(4) Tili and fimbriae are mainly involved in motility of bacterial cells.
37. A cell organelle containing rydrolytic enzymes is
(1) ribosome
(2) mesosome
(3) lysosome
(4) microsome
38. During cell growth, DNA synthesis takes place in
(1) G_{2} phase
(2) M phase
(3) S phase
(4) G_{1} phase
39. Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins?
(1) Pyruvic acid
(2) Acetyl CoA
(3) G Glucose-6-phosphate
(4) Fructose 1,6-bisphosphate
40. A few drops of sap were collected by cutting across a plant stem by a suitable mcthod. The sap was tested chemically. Which one of the following test results indicates that it is phloem sap?
(1) Low refractive index
(2) Absence of sugar
(3) Acidic K
(4) Alkaline '
41. You are given a tissue with its potential for differentiation in an artificiai culture. Which of the following pairs of hormones would you add to the medium to secure shocts as well as roots?
(1) Aldxin and abscisic acid
(2) Gibberellin and abscisic acid
(3) IAA and gibberelijn
(1) Auxin and cytokinin
42. Phytochrome is a
(1) lipoprotcin
(2) chromoprotein
-(3) flavoprotein
(4) glycoprotein
43. Which is essential for the growth of root tip?
(1) Ca
(2) Mn
(3) Zn
(4) Fe
44. The process which makes major difference between C_{3} and C_{4} plants 19
(2) photorespiration
(2) respiration
(3) glycolysis
(6) Calvin cycle
45. Which one of the following statements is not correct?
...(X)In potato, banana and ginger, the plantlets arise from the internodes present in the modified stem.
(2) Water hyacinth, growing in the standing water, drains oxygen from water that leads to the death of fishes.
(3) Offspring produced by the asexual reproduction are called clone.
(4) Microscopic, motile asexual reproductive structures are called zoospores.
46. The part of nephron involved in active reabsorption of sodium is
(1) Bowman's capsule
(2) descending limb of Henle's loop
(3) distal convoluted tubule
(4) proximal convoluted tubule
47. Which of the following is hormoncreleasing IUD?
(1) Lippes loop
(2) Cu7 x
((3) LNO-20
(4) Multiload 375 「
48. Which of the following is incorrect regarding vasectomy?
(1) Vasa deferentia is cut and tied
(2) Irreversible sterility
(3) No sperm occurs in seminal fluid
(作) No sperm occurs in epididymis
49. Embryo with more than 16 biastomeres formed duc to in vitro fertilization is transferred into
(1) fimbriae
(2) cervix

43! uterus
(4) falloptian tubc
50. Which of the following depicts the corrcet pathway of transport of sperms?
(1) Kete testis \rightarrow Vas deferens \rightarrow Efferent (Juctules \rightarrow Epididymis
(2) Efferent ductulcs \rightarrow Retc testis \rightarrow Vas deferens \rightarrow Epididymis
(3) Kete testis \rightarrow Efferent ductules \rightarrow Epididymis \rightarrow Vas deferens
(4) Rete testis \rightarrow Epididymis \rightarrow Efferent ductules \rightarrow Vas deferens
51. Match Column-I with Column-II and select the correct option using the codes givera below

Coinmm-I

a. Mons pubis
b. Antrum
c. Trophectoderm
d. Nebonkern

Codes :

	a	b	c	d
(1)	(iii)	(i)	(iv)	(ii)
(2)	(j)	(iv)	(iii)	(ii).
(3)	(iii)	(iv)	(ii)	(i)
(()	(iii)	(iv)	(i)
(ii)				

52. Several hormones like $h \mathrm{CG}, \mathrm{hPL}$, estrogen, progesterone are produced by
(1) fallopian tube
(2) pituitary
(3) ovary
(4)'placenta
53. If a colour-blind man marries a woman who is homozygous for normal colour vision, the probability of their son being colour-blind is
(1) 0.75
(2) 1
(3) 0
(4) 0.5
54. Genetic drift operates in
(1) non-reproductive population
(2) slow reproductive population
f(a) small isolated population
(4) large isolated population
55. In Hardy-Weinberg equation, the fiequency of heterozygous individual is represented by
(1) $p q$
(2) q^{2}
(3) p^{2}
(4) $2 p q$
56. The chronological order of human evolution from early to the recent is
(1) Ramanithecus \rightarrow Homo habilis \rightarrow Australopithecus \rightarrow Homo erectus
(2) Australopithecus \rightarrow Homo habilis \rightarrow Ramapithecus \rightarrow Homo erectus
(3) Australopithecus \rightarrow Ramapithecus \rightarrow Homo habiiis \rightarrow Homo erectus
(4) Ramapithecus \rightarrow Australopithecus \rightarrow Homo habilis \rightarrow Homo erectus
57. Which of the following is the correct sequence of events in the origin of life?
58. Formation of protobionts
II. Synthesis of organic monomers
III. Synthesis of organic polymers
IV. Formation of DNA-based genetic systems
(1) II, III, I, IV
(2) II, III, IV, I
(3) I, II, liI, IV \times
(4) I, III, II, IV
59. A molecule that can act as a genetic material must fulfill the traits given below, except
(Y) it should be unstable stricturally and chemically \times
(2) it should provide the scove for slow changes that are required for evolution
(3) it should be able to express itself in the form of 'Mendelian characters'
(4) it should bc able to generate its replica
60. DNA-dependent RNA polymerase catalyzes transcription on one strand of the DNA which is called the
(1) alpha strand
(2) antistrand
(3) template strand
(14) coding strand
61. Interspecitic hybridization is the mating of
(1) superior males and females of different bree.ds
(2) more closely related individuals within same breed for 4-6 generations
(3) animals within same breed without having common ancestors
(45) two different related species
62. Which of the following is correct regarding AIDS causative agent HIV?
(1) HIV is unenveloped retrovirus.
(2) HIV does not escape but attacks the acquired immiune response.
(3) HIV is enveloped virus containing one molecule of single-stranded RN.A and one molecule of reverse transcriprase. .
(4) HIV is enveloped virus that contains two identical molecules of single-stranded RNA and two molcculcs of reverse transcriptase.
63. Among the following edible fishes, which one is a marine fish having rich source of omega-3 fatty acids?
(ザ Mrigala
(2) Mackercl
(3) Mystus
(4) Mangur
64. Match Column-I with Columm-II and select the correct option using the codes given bclow :

Solumn-I

a. Citric acid
b. Cyclosporin A
c. Statin's
d. Butyric acid

Codes:

	a	b	c	d
(l)	(i)	(iv)	(ii)	(iii)
(2)	(iii)	(iv)	(i)	(ii)
(3)	(iii)	(i).	(ii)	(iv)
(4)	(iii)	(i)	(jv)	(ii)

64. Biochemical Oxygen Demanci (BOIJ) may not. be a good index for pollution for water bodies receiving effluents from
(1) petroleum industry
(2) sugar industry

- 3 J domestic sewage
(4) dairy industry

65. The principle of competitive eyclusion was / stated by
(1) MacArthur
(2) Verfulsi and Peari
(3) C. Darwin
(4) G. F. Gause
66. Which of the following National Parks is home to the famous musk deer or hangul?
(1) Eaglenest Wildlife Sanctuary, Arunachal Pradesh
(2) Dachigam National Park, Jammu \& Kasinmir
(3) Keibul Lamjao National Park, Manipur
(4) Bandhavgarh National Park, Madhya Pradesh
67. A lake which is rich in organic waste may br result in
(1) increased population of fish due to lots of nutrients
(2) mortality of fish due to lack of oxygen
(3) increased population of aquatic organisms due to minerals
(4) drying of the lake due to algal bloom
68. The highest DDT concentration in aquatio
food chain shall occur in
(1) crab
(2) ecl
(3) phytoplankton
(4) seagull
69. Which of the foliowing sets of diseases is caused by bacteria?
(1) Tetanus ande mumps
(2) Herpes and influcnza
(3) Cholera and tetanus
fof Typhoid and smallpox
70. Match Columx-I with Column-II for fiousefly classification and seleci the correct option using the codes given below

Column-【
 a. Family
 b. Order
 c. Class
 d. Phylum

Column-II

(i) Diptcra
(ii) Arthropoda
(iii) Muscidiae
(iv), Insecta

Codes:

	a	b	c	d
(1)	(iv)	(iii)	(ii)	(i)
(2)	(iv)	(ii)	(i)	(iii)
(3)	(iii)	(i)	(iv)	(ii) .
(4)	(iii)	(ii)	(iv)	(i) x

71. Chorse the correct statement.
(1) All reptiles have a three-chambered heart.
(2) Ail Pisces have gills covered by an operculum.
(3) All mammals are viviparous, *
(ffi) All cyclostomes do not posisess jaws and paired lins.
72. Study the four statements (A-T) given below and select the two correct ones out of them
A. Definition of biological species was given by Ernst Mayr.
R. Fhotoperiod does not affect reproduction in plants.
C. Binomial nomenclaturc system was given by R. H. Whittaker.
D. Ir: unicellular organisms, reproduction is symonymous with growth.
Thie two correct statements are
(1) A and D
(2) Λ and B
(3) B and C
(4) C and D
73. In male cockroaches, sperms are stored in which part of the reproductive system?
(1) Testes
(2) Vas deferens
(3) Seminal vesicles
(4) Mushroom glands
74. Sinooth muscles are
(1) involuntary, cylinclrical, striated
(2) voluintary, spindle-shaped, uninucleatc
(8) involuntary, fusiform, non-striated
(4) voluntary, multinucleate, cylindrical
75. Oxidative phosphorylation is
(1) addition of phosphate group to ATF
(2) formation of ATP by energy released from electrons removed during substrate cxidation
-(3) formation of ATP by transfer of phosphate group from a substrate to ADF
(${ }^{4}$) cxidation of phosphate group in ATP
76. Which of the following is the least likely to be
. 7 involved in stabilizing the three-dimensional folding of mosl proteins?
(i) Hydrophobic interaction
(2) Ester bonds
(3) Hydrogen bonds
(4) Electrostatic interaction
77. Which of the following describes the given grapi correctly?

(1) Endothermic reaction with energy A in absence of enzyme and B in presence of erizyme
(2) Exothermic reaction with energy A in absence of enzyme and B in presence of enzyme
(3) Endothermic reaction with energy A in presence of enzyme and B in absence of enzyme
(4) Exothermic reaction with energy A in presence of enzyme and B in absence of enzyme
78. When cell has stalled DNA replication fork; which checkpoint should be predominantly activated?
(1) M
(2) Bosth G_{2} / M and M
(3) $G_{1} / 5$
(4) $\mathrm{C}_{2} / \mathrm{M}$
79. Match the stages of meiosis in Coiumn-I to their characteristic features in Ccluman-II and selest the correct option using the codes given below

Column- I

a. Pachytene
b. Metaphase
c. Diakincsis
d. Zygotenc

Columin-II

(i) Pairing of homologous chromosonnes
(ii) 'Terminalization of chiasinata
(iii) Crossing-over takes place
(iv) Chromosomes align at equatorial pate

Codes

	a	b	c	d
(1)	(ii)	(iv)	(iii)	(i)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(iii)	(iv)	(ii)	(i)
(4)	(i)	(iv)	(ii)	(iii)

80. Which hormones do stimulate the production of pancreatic juice and bicarbona'e?
(1) Cholecystokinin and secretin
(2) Insulir and giucagon
(3) Angiotensin and epinephrine
(4) Gastrin and insulin
81. The partia: pressure of oxygen in the alveoli of the lungs is
(1) less than that in the blood
(2) less than that of carbon dioxide
(3) equal to that in the blood

L4f more than that in the blood
82. Choosc the correct statement.
(1) Photorccoptors in the hurnan eye are depolarized during darkness and become hyperpolarized in response to the light stimulius.
(2) Reccptors do not produce graded potentials.
(3) Nociceptors respond to chariges in pressure.
(4) Meissner's corpuscles are thermoreceptors.
83. Graves' disease is caused due to
'? (1) hyposecretion of adrenal gland
(2) hypersecretion of adrenal gland
(3) hyposecretion of thyroid glancl
of(t) hypersecretion of thyroid gland
84. Name the ion responsible fur uiluasking of active sitcs for myosin for cross-bridge activity during muscle contraction.
(1) Sodium
(2) Pctassium
(f) Calcium
(1) Magnesium
85. Name the blood cells, whese rediuction in number can cause clotting disorder, leading to excessive loss of blood from the body.
(1) Neutrophils .
(2) Thrombucyles
(3) Erythrocytes
(4) Leucocytes
86. Name a peptide hormone which acts mainly on hepatocytes, adipncytes and erihances cellular glucose uptake and utilization.
(1) Secretin
(2) Gastrin
(3) Insulin
(4) Glucagon
87. Usteoporosis, an age-related disease of skeletal system, may occur due to
(1) decreased level of estrogen $ノ$ -
(2) accumulation of uric acid leading to inflammation of joints x
(3) immunc disorder affecting neuromuscular junction leading to fatigue φ
(4) high concentration of Ca^{++}and Na^{+}»
88. Serum differs from blood in lít lacking clotting factors
(2) lacking antibodics
(3) lacking globulins
(4) lacking albumins
89. Lungs do not collapse betwecen breaths and some air always remains in the lungs which can never be expelled because
(1) there is a positive intrapleural pressurc
(2.) pressire in the lungs is higher that the atmospheric pressure
(2) there is a negative pressure in the lungs
(4) there is a negative intrapleural pressure pulling at the lung wolls
90. The posterior pituitary gland is not a 'true' eridocrine gland because
(1) it is, under the regulations of hypothalamus
(2) it secretes enzymes
(3) it is provided with a duct
(4) it only stores and releases hormones
91. A parallel-plate capacitor of area A, plate scparation a^{\prime} and capacitance C is filled with four dieiectric materials having dielectric constants k_{1}, k_{2}, k_{3} and k_{1} as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric: constant k is given by

(1) $\begin{aligned} & 2 \\ & k: \\ & k_{1}+k_{2}+k_{3} \\ & { }^{A}-\frac{1}{k_{7}}\end{aligned}$
(2) $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\frac{3}{2 k_{G}^{\prime}}$
(3) $k=k_{1}+k_{2}+k_{3}+3 k_{4}$
(4) $k=\frac{2}{3}\left(k_{1}+k_{2}+k_{3}\right)+2 k_{4}$
92. The potential difference $\left(V_{A}-V_{B}\right)$ between the points A and B in the given figure is

(1) +6 V
(2) +o V
(3) -3 V
(4) $+3 v$
93. A filament bulb $(500 \mathrm{~W}, 100 \mathrm{~V})$ is to be used in a 230 V main supply. When a resistance R is corrmected in series, it works perfectly and the bulb consumes 500 W . The value of R is
(1) 26Ω
(2) 13Ω
(3) 23058
(1) 46Ω
94. A long wire carrying a steady current is bent inte a circular loop of onc tirm. The magnctic field at the centre of the loop is \mathcal{B}. It is then bent into a circular coil of n turns. The masnetic field ar the centre of this coil of n turns will be
(1) $2 n B$
(2) $2 n^{2} B$
(3) n^{13}
(4) $n^{2} B$
95. A bar magnct is hung by a thin cotton thread in a uniform horizontal magnetic field and is in equilibriurn state. The energy required to rotate it by 60° is W. Now the torque required to kccp the mugnet in this new -position is
(1) $\sqrt{3} W$
('2) 2 W
(3) $\frac{W}{\sqrt{3}}$
(4) $\sqrt{3} W$
96. An electron is moving in a circular path linder the influence of a transverse magnetic, field of $3.57 \times 10^{-2} \mathrm{~T}$. If the value of e / m is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$, the frequency of revolution of the electron is
(i) 62.8 MHz
(2) 6.28 MHz
(3) 1 GHz
(4) 100 MHz
97. Which of the following combinations should be selected for better tuning of an $L,-C-R$ circuit used for communication?
(1) $R=15 \mathrm{~s} ., L=3.5 \mathrm{H}, C=30 \mu \mathrm{~F}$
(2) $K=25 \Omega, L=1.5 \mathrm{H}, C=45 \mu \mathrm{~F}$
(3) $R=20 \Omega, L=1.5 \mathrm{H}, C=3.5 \mu \mathrm{~F}$
(4) $R=25 \Omega, L=2.5 \mathrm{H}, C=45 \mu \mathrm{~F}$
98. A uniform magnctic ficld is restricted within a region of radius r. The magnetic ficld changes with time at a rate $\frac{d \vec{B}}{d t}$. Loop 1 of radins $R>r$ encloses the region r and $\operatorname{lon} p$? of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f. generated is

(1) $-\frac{d \vec{B}}{d t} \pi R^{2}$ in loop 1 and zero in loop 2
(2) $\frac{d B}{d t} \pi r^{2}$ in loop 1 and zero in loop 2 -
(3) zero in loop 1 and zero in loop 2
(4) $-\frac{d B}{d t} \pi r^{2}$ in loop 1 and

$$
-\frac{d \vec{B}}{d t} \pi r^{2} \text { in innp ? }
$$

99. The potential differences acruss the resistance, capacitance and inductancc arc $80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an $L-C-R$ circuit. The power factor of this circuit is
(1) 0.8
(2) $1 \cdot 0$
(3) 0.4
(4) 0.5
100. A 100Ω resistarice and a capacitor of 100Ω reactance are connected in series across a 220 V sourcc. When the capacitor is 50% charged, the peak value of the displacement current is
(1) 4.4 A
(2) $11 \sqrt{2} \mathrm{~A}$
(3) $2 \cdot 2 \mathrm{~A}$
(4) 11 A
101. Two identical glass ($\mu_{\mathrm{g}}=3 / 2$) equicorivex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_{w}=4 / 3$). The focal length of the combination is
(1) $4 f / 3$
(2) $3 f / 4$
(3) $f / 3$
(4) \int
102. An air butble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when vicwed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
(1) 12
(2) 16
(3) 8
(4) $\quad 10$
103. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference pattern, the ratio

$$
\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

will be
(1) $\frac{\sqrt{n}}{(n+1)^{2}}$
(2) $\begin{gathered}2 \sqrt{n} \\ (n+1)^{2}\end{gathered}$
(3) \sqrt{n}
$n+1$
(4) $\begin{aligned} & 2 \sqrt{n} \\ & n+1\end{aligned}$
104. A person can see ciearly objects only when they lic between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will bc
(1) concave, -0.2 diopter
(2) convex, +0.15 diopter
(3) convex, +2.25 dioptcr
(4) concave, -0.25 diopter
105. A lincar aperture whose width is 0.02 cm is placed immediately in front of a leris of focal length 60 cm . The aperture is illuminated normally by a parallel beam of wavelength $5 \times 10^{-5} \mathrm{~cm}$. The distance of the first dark band of the diffraction pattern from the centre of the screen is
(1) 0.3 .0 cm
(2) 0.15 cm
(3) 0.10 cm
(4) 0.25 cm
106. Electrons of mass m with de.-Broglie wavelength λ fall on tine target in an X-ray tube. The cutoff wavelength (λ_{0}) of the emitted X-ray is
(1) $\lambda_{0}-\frac{2 m n^{2} c^{2} \lambda^{3}}{h^{2}}$
(2.) $\lambda_{0}=\lambda_{0}$
(3) $\lambda_{0}=\begin{gathered}2 m c \lambda^{2} \\ n\end{gathered}$
(4) $\lambda_{0}=\frac{2 h}{m c}$
107. Photons with energy 5 ev are incident on a cathode C in a photoelectric rell. The maximum energy of emitted photoelectrons is 2 eV . When photons of energy 6 eV are incident on C, no photoclectrons will reach the anode A, if the stopping potential of A relative to C is
(1) -1 V
(2) $-3 v$
(3) $+3 V$
(4) $+4 V$
108. If an electron in a hydrogen atom jumps from the 3rd orbit to the 2nd orbit, it emits a photon of wavelength λ. When it jumps from the 4 th urbit to the 3rd orbit, the corresponding wavelength of the photon will be
(1) 20λ
(2) $\frac{20}{13} \lambda$
(3) $\frac{16}{25} \lambda$
(4) $\frac{9}{16} \lambda$
209. The half-life of a radioactive substance is 30 minutes. The time (in minutes) taken between 40% decay and 85% decay of the same radioactive substance is
(1) 45
(2) 60
(3) 15
(4) 30
110. For CP transistor amplifier, the audio signal voltage across the collector resistance of $2 \mathrm{k} \Omega$ is $4 V$. If the current amplification factor of the transistor is 100 and the hase resistance is 1 ks 2 , then the input signal voltage is
(1) 30 mV
(2) 15 mV
(3) 10 mV
(4) 20 mV
111. The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance R_{1} will be

(1) 1.43 A
(2) 3.13 R
(3) 2.5 A
(4) 10.0 A
112. What is the output Y in the following circuit, when all the three inputs A, B, C are first 0 and then 1 ?

(1) 1:0
(2) 1. 1 1
(3) 0,1
(4) 0,0
113. Planck's constant (h), speed of light in vacidum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?
(1) $\sqrt{\frac{h c}{G}}$
(2) $\sqrt{\begin{array}{c}C i c \\ n^{3 / 2}\end{array}}$
(3) $\frac{\sqrt{h G}}{c^{3 / 2}}$
(4) $\frac{\sqrt{h} \bar{G}}{c^{5 / 2}}$
114. Two cars P and Q start from a point at the same time in a straight line and their positions arc represented by $x_{p}(t)-a t+b t^{2}$ and $x_{Q}(t)=f t-t^{2}$. At what time do the cars have the same velocity?
(1) $\frac{a+f}{2(i+b)}$
(2) $\frac{f-a}{2(1+b)}$
(3) $\frac{a-f}{1+b}$
(4) $\frac{a+f}{2(b-1)}$
115. In the given figure, $a=15 \mathrm{~m} / \mathrm{s}^{2}$ represent.s the total acceleration of a particlc moving in the clockwise direction in a circle of radius $R=2.5 \mathrm{~m}$ at a given instant of time. The speed of the particle is

(1) $5.7 \mathrm{~m} / \mathrm{s}$
(2) $6.2 \mathrm{~m} / \mathrm{s}$
(3) $4.5 \mathrm{~m} / \mathrm{s}$
(4) $5 \cdot 0 \mathrm{~m} / \mathrm{s}$
116. A rigid ball of mass m strikes a rigid wall at 60° and gets reflected withcut loss of speed as shown in the figure below. The value of irnpulse imparted by the wall on the ball viil be

(1) $\quad \mathrm{mV}$
(2.) $\begin{gathered}m V \\ 3\end{gathered}$
(3) $m V$
(4) 2 mV
117. A bullet of mass 10 g moving horizoritally with a velocity of $400 \mathrm{~m} \mathrm{~s}^{-1}$ strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m . As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm . The speed of the bullet after it emerges out horizontally from the block will be
(1) $1.20 \mathrm{~m} \mathrm{~s}^{-1}$
(2) $160 \mathrm{~m} \mathrm{~s}^{-1}$
(3) $100 \mathrm{~m} \mathrm{~s}^{-1}$
(4) $80 \mathrm{~m} \mathrm{~s}^{-1}$
118. Two identical balls A and B having velocities of $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$ respectivcly collide elastically in one dimension. The velocities of B and A after the collision respectively will be
(1) $-0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
(2) $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
(3) $-0.5 \mathrm{~m} / \mathrm{s}$ and $0.3 \mathrm{~m} / \mathrm{s}$
(4) $0.5 \mathrm{~m} / \mathrm{s}$ and $-0.3 \mathrm{~m} / \mathrm{s}$
119. A particle moves from a point $(-2 \hat{i}+5 \hat{j})$ to $(4 \hat{j}+3 \hat{k})$ when a force of $(4 \hat{i}+3 \hat{j}) \mathrm{N}$ is applied. How much work has been done by the force?
(1) 5 J
(2) 2 J
(3) 8 J
(4) 11 J
120. Two rotating bodies A and B of masses m and $2 \pi n$ with moments of inertia I_{A} and $I_{B}\left(I_{B}>I_{A}\right)$ have equal kinetic energy of rotation. If $I_{I_{A}}$ and $J_{D_{B}}$ be their angular momenta respectively, then
(1) $L_{B}>L_{A}$
(2) $L_{A}>L_{B}$
(3) $L_{A}=\begin{gathered}L_{B} \\ 2\end{gathered}$
(4) $L_{A}=2 L_{B}$
121. A solid sphere of mass m and radius R is rotating about its diametcr. Λ solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinctic cnergies of rotation ($E_{\text {sphere }} / E_{\text {cylinder }}$) will be
(1) $1: 4$
(2) $3: 1$
(3) $2: 3$
(4) $1: 5$
122. A light rod of length i has two masses m_{1} and m_{2} attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is
(1) $\left(m_{1}+m_{2}\right) l^{2}$
(2) $\sqrt{ } \sqrt{n n_{1}} m_{2} i^{2}$
(3) $\begin{gathered}m_{1} m_{2} \\ m_{1}+m_{2}\end{gathered} l^{2}$
(4) $\frac{m_{1}+m_{2}}{m_{1} m_{2}} l^{2}$
123. Starting from the centre of the earth having radius R, the variation of g (acceleration due to gravity) is shown by
(1)

(2)

(3)

(4)

124. A satellite of mass $i n$ is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_{0} : the value of acceleration due to gravity at the carth's surface, is
(1) $\frac{2 m g_{0} R^{2}}{R+h}$
(2) $-\frac{2 m g_{0} R^{2}}{R+h}$
(3) $\begin{gathered}m g_{0} R^{2} \\ 2(R+i l)\end{gathered}$
(4) $-\frac{m G_{0} R^{2}}{2(R+h)}$
125. A rectangular film of liquid is extended from $\{4 \mathrm{~cm} \times 2 \mathrm{~cm}\}$ to ($5 \mathrm{~cm} \times 4 \mathrm{~cm}$). If the work done is $3 \times 10^{-4} \mathrm{~J}$, the value of the surface tension of the liquid is
(1) $0.2 \mathrm{~N} \mathrm{~m}^{-1}$
(2) $8.0 \mathrm{~N} \mathrm{~m}^{-1}$
(3) $0.250 \mathrm{~N} \mathrm{~m}^{-1}$
(4) $0.125 \mathrm{~N} \mathrm{~m}^{-1}$
126. Three liquids of densities ρ_{1}, ρ_{2} and ρ_{3} (with $\left.p_{1}>p_{2}>p_{3}\right)$, having the same value of surface tension T, rise to the same height in three identical capillaries. The angles of contact θ_{1}, θ_{2} and θ_{3} obey
(1) $\frac{\pi}{2}<\theta_{1}<\theta_{2}<\theta_{3}<\pi$
(2) $\pi>\theta_{i}>\theta_{2}>\theta_{3}>\frac{\pi}{2}$
(3) $\frac{\pi}{2}>\theta_{1}>\theta_{2}>\theta_{3} \geq 0$
(4) $0 \leq \theta_{1}<\theta_{2}<\theta_{3}<\frac{\pi}{2}$
127. Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at $100^{\circ} \mathrm{C}$, while the other one is at $0^{\circ} \mathrm{C}$. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is
(1) lcss than $50^{\circ} \mathrm{C}$ but greater than $0^{\circ} \mathrm{C}$
(2) $0^{\circ} \mathrm{C}$
(3) $50^{\circ} \mathrm{C}$
(4) more than $50^{\circ} \mathrm{C}$
128. A body cools from a ternperature $3 T$ to $2 T$ in 10 minutes. The room temperature is T. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be
(1) $\frac{4}{3} T$
(2) T
(3) ${ }_{4}^{7} T$
(4) $\frac{3}{2} q$
129. One miole of an ideal moratomic gas undergoes a process described by the cquation $P V^{3}=$ constant. The heat capacity of the gas during this process is
(1) $2 R$
(2) R
(3) $\frac{3}{2} R$
(4) $\frac{5}{2} R$
130. The temperature inside a refrigerator is $t_{2}{ }^{\circ} \mathrm{C}$ and the room temperature is $t_{1}{ }^{\circ} \mathrm{C}$. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be
(1) $\frac{t_{2}+273}{t_{1}-t_{2}}$
(2) $\frac{t_{1}+t_{2}}{t_{1} 1273}$
(3) $\frac{t_{1}}{t_{1}-t_{2}}$
(4) $\frac{t_{1}+273}{t_{1}-t_{2}}$
131. Λ given sample of an ideal gas occupics a volume V at a pressure. P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas?
(1) $P /(k T V)$
(2) $m k T$
(3) $P /(k T)$
(4) $\mathrm{Pm} /(\mathrm{kT})$
132. A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3 s . When the mass m is increased by 1 kg , the time period of oscillations becomes 5 s . The value of m in kg is
(1) $\begin{gathered}16 \\ 9\end{gathered}$
(2) $\begin{gathered}9 \\ 16\end{gathered}$
(3) $\begin{aligned} & 3 \\ & 4\end{aligned}$
(4) $\begin{aligned} & 4 \\ & 3\end{aligned}$
133. The second overtone of an open organ pipc has the same frequency as the first overtone of a closed pipe L metre long. The length of the open pipe will be
(1) $\frac{L}{2}$
(2) $4 L$
(3) L
(4) $2 L$
134. Three sound waves of equal amplitudes have frequencies $(n-1), n,(n+1)$. They superimpose to give beats. The number of beats produced per second will be
(1) 3
(2) 2
(3) 1
(4) 4
135. An ele.tric. dipole is placed at an angle of 30° with an electric field intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. It experiences a torque equal io 4 Nm . The charge on the dipole, if the dipole length is 2 cm , is
(1) 5 mC
(2) $7 \mu \mathrm{C}$
(3) 8 mC
(4) 2 mc
136. Hot concentrated sujphuric acid is a moderately strong oxidizing agent. Which of the following reactions dees not show oxidizing behaviour?
(1) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{C}$
(2) $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
(3) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
137. Which of the following pairs of d-orbitals will (? have electron density along the axes?
(i) $d_{z^{2}}, d_{x^{2}-y^{2}}$
(2) $d_{x y}, a_{x^{2}-y^{2}}$
(3) $d_{z^{2}}, d_{x z}$
(4) $d_{x y}, d_{i, z}$
138. The correct geometry and hybridization for XeF_{4} are
(1) planar triangle, $s p^{3} d^{3}$
(2) square planar, $s p^{3} d^{2}$
(3) octahedral, $s p^{3} d^{2}$
(4) trigonal bipyramidal, $s p^{3} c$
139. Among the following, which one is a wrong statement?
(1) SeF_{4} and CH_{4} have same slape.
(2.) I_{3}^{+}has bent geometry.
(3) PH_{5} and BiCl_{5} do not exist.
(1) $p \pi-d \pi$ bonds are present in SO_{2}.
140. The correct increasing order of trans-effect " of the following species is
(1) $\mathrm{Br}^{-}>\mathrm{CN}>\mathrm{NH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}$
(2) $\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{II}_{5}^{-}>\mathrm{NH}_{3}$
$f(3) \mathrm{NII}_{3}>\mathrm{CN}^{-}>\mathrm{Br}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}$
(44) $\mathrm{CN}^{-}>\mathrm{C}_{6} \mathrm{H}_{5}^{-}>\mathrm{Br}^{-}>\mathrm{NH}_{3}$
141. Which une of the following statements related to lanthanons is incorrect?
(1) All the lanthanons are much roore reactive than aluminium.
(2) Ce(+4) solutions are widely used as oxidizing agent in volumetric andiysis.
for Europiuri shows +? oxidation state.
(4) The basicity decreases as the ienic radius decreases from Pr to Lu.
142. Jahn-Tellex effect is not obscrved in high spir complexes of
(1$)^{\prime} d^{4}$
(2) d^{9}
(2x+(3) d^{7}
(4) a^{8}
143. Which of the following can be used as the halide component for Firiedel-Craits reaction?
(1) Chloroethene
(2) Isopropyl chioride
(3) Chlorobenzene
(4) Brornobenzene
144. In which of the following molecules, all atoms are coplanar?

(2)

(3)

(4)

- i

145. Which onc of the following structures represents nyion 6,6 polymer?
(1)

(3)

(4)

146. In pyrrole

the clectron density is maximum on
(i) 2 and 4
(2) 2 and 5
(3) 2 and 3
$x(4) 3$ and 4
147. Which of the following compounds shall not produce propene by reaction with HBr followed by elimination or direct only elimination reaction?
(1) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}$
(2) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{H}_{2}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{Br}$
(3)

148. Which one of the following nitro-compounds does not react with nitrous acid?
(1)

(3)

(4)

149. The central dogma of molecular genetios states that the genetic information flows from
(1) DNA \rightarrow RNA \rightarrow Protcins
(2) DNA \rightarrow RNA \rightarrow Carbohydrates
(3) Amino acids \rightarrow Proteins \rightarrow DNA
(4) DNA \rightarrow Carbohydrates \rightarrow Proteins
150. The correct corresponding order of names of iour aldoses with configuration given below

respectively, is
(1) $\begin{aligned} & \text { L-erythrose, L-threose, D-erythrose, } \\ & \text { D-threose }\end{aligned}$
(2) D-erythrose, D-threose, L-erythrose, L-thrcosc
(3) L-erythrose, L-threose, L-erythrose, D-threose
(4) D-threose, D-erythrose, L-thrcosc, L-crythrose
151. In the given reaction

the product P is
(1)

(2)

152. A given nitrogen-containing arcmatic compound A reacts with $\mathrm{Sn} / \mathrm{HCl}$, followed by HNO_{2} to give ani unstable compound B. B, on treatment with phenol, forms a beautiful coloured compound C with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$. The structure of compound A is
(1)

(4)

153. Consider the reaction

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{NaBr}
$$

This reaction will bc thc fastest in
(1) N, N^{\prime}-dimethylformarnide (I)MF)
(2) water
(3) ethanol
(4) methanol
154. The correct structure of the product A formed in the reaction

is
(1)

(2)

(3)

(4)

155. Which among the given molecules can exhibit tautomerism?

III
(1) Both I and II
(2) Both II and IIJ
(3) IIl oniy
(4) Both I and III

15G. The correct urder of strengths of the carboxylic acids

is

(2) II $>$ I ン III λ
(3) I $>$ Il $>$. III
(4) II $>$ III $>$ I
157. The compound that will react most readily with gaseous bromine has the formula
(1) $\mathrm{C}_{4} \mathrm{IH}_{10}$
(2) $\mathrm{C}_{2} \mathrm{H}_{4}$
(3) $\mathrm{C}_{3} \mathrm{H}_{6}$
(4) $\mathrm{C}_{2} \mathrm{H}_{2}$
158. Which one oif the fullowing compounds shows the presence of intramolecular hydrogen bond?
(1) Cellulose
(2) Concentrated acetic acid x
-(३) $\mathrm{H}_{2} \mathrm{O}_{2}$
(4) HCN
159. The molar conductivity of a $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of AgNO_{3} with electrolytio conductivity of $5.76 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ at 298 K is
(1) $0.086 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(2) $28.8 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(3) $2.88 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(1) $11.52 \mathrm{Scm}^{2} / \mathrm{mol}$
160. The decomposition of phosphine $\left(\mathrm{PH}_{3}\right)$ on tungsten at low pressure is a first-order reaction. It is because the
(1) rate is indcpendent of the surface coverage
(2) rate of decomposition is very slow
(3) rate is proportional to the surface coverage
(4) rate is inversely proportional to the surface coverage
161. The coagulation values in milimoles per litre of the clectrolytes used for the coagulation of $\mathrm{As}_{2} \mathrm{~S}_{3}$ are given below :
I. $(\mathrm{NaCl})=52$,
II. $\left(\mathrm{BaCl}_{2}\right)=0.69$,
III. $\left(\mathrm{MgSO}_{4}\right)=0.22$

The correct order of their coagulating power is
HS [iI $>$ II $>$ I
(2) III $>$ I $>$ II
(3) I $>$ II $>$ III
(4) II $>$ I $>$ III
162. During the electrolysis of moiten sodium chloride, the time requirea to produce 0.10 mol of cblorine gas using a current of 3 amperes is
(1) 220 minuies
(2) 330 minutes
(3) 55 minutes
(4) 110 minutes
163. How many electrons can fit in the orbital for which $n=3$ and $l=1$?
(1) 10
(2) 14
(3) 2
析 6
164. For a sample of perfect gas when its pressure is changed isothermally from p_{i} to p_{f}, the entropy change is given by
(1) $\Delta S=n R T \ln \left(\frac{P_{S}}{p_{i}}\right)$
(2) $\Delta S=R T$ in $\left(\frac{p_{1}}{p_{f}}\right)$
(3) $\Delta S=n R \ln \left(\frac{p f}{i P_{i}}\right)$
(4) $\quad \angle S=n k \ln \left(\frac{p_{i}}{p_{f}}\right)$
165. The van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is
(1.) 2
(2) 3
(3) 0
(4) 1
1.166. The perceritage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that fo. me pyridinium ion $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}\right)$ in a 0.70 M aqueous pyridine solution for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=1.7 \times 10^{9}$) is
(1) 0.77%
(a) 1.6%
(3) 0.0060%
(4) 0.013%

In calcium nuoride, having the fluorite structurc, the coordination numbers for calcium ion $\left(\mathrm{Ca}^{2+}\right)$ and fluoride ion $\left(\mathrm{F}^{-}\right)$are
(!) 8 and 4
4 and 8
168. If the $E_{\text {cell }}^{\circ}$ for a given reaction has a negativ value, which of the following gives th carxect relationships for the valucs of Δ and $K_{e q}$?
(1) $\Delta G^{\circ}<0 ; K_{e q}>1$
(2) $\Delta G^{\circ}<0 ; \quad K_{\text {eq }}<1$
(3) $\Delta G^{\bullet}>0 ; K_{\text {eq }}<1$
(4) $\Delta G^{0}>0 ; K_{\mathrm{cq}}>1$
169. Which one of the following is incorrect for ideal solution?
(1) $\Delta P=P_{\text {obs }}-P_{\text {calculated by Raoult's law }}=0$
(2) $\Delta G_{\text {mix }}=0$
(3) $\Delta H_{\text {mix }}=0$
(4) $\Delta U_{\text {mix }}=0$
170. The solubility of $\Lambda \mathrm{gCl}(\mathrm{s})$ with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would bc
(1) $1.6 \times 10^{-11} \mathrm{M}$
(2) zero
(3) $1.26 \times 10^{-5} \mathrm{M}$
(4) $1.6 \times 10^{-9} \mathrm{M}$
171. Supposc the elements X and Y combine to form two compounds $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of XY_{2} weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weights of X and Y ale
(1) 20,30
(2) 30,20
(3) 40, 30
(4) 60, 40
172. The number of electrons delivered at the cathode during clectrolysis by a current of 1 ampere in 60 seconds is (charge on electron $=1.60 \times 10^{-19} \mathrm{C}$)
(1) 3.75×10^{20}
(2) 7.48×10^{23}
(3) 6×10^{23}
(4) 6×10^{20}
173. Boric acid is an acid because its molecule
(1) accepts OH^{-}from water rcleasing proton
(2) combines with proton from water molccule
(3) contains replaceable H^{+}ion
(4) gives up a proton
174. AlF_{3} is soluble in HF only in presence of KF . It is due to the formation of
(1) AlH_{3}
(2) $\mathrm{K}\left[\mathrm{AlF}_{3} \mathrm{H}\right]$
(3) $\mathrm{K}_{3}\left(\mathrm{AlF}_{3} \mathrm{H}_{3}\right)$
(4) $\mathrm{K}_{3}\left[\mathrm{AlF}_{6}\right]$
175. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is becanse
(1) zinc has lower negative electrode potential than iron
(2) zinc has higher negative electrode potential than iron
(3) zinc is lighter than iron
(4) zinc has lower melting point than iron
176. The suspension of slaked lime in water is known as
(1) milk of lime
(2) aqueous solution of slaked lime
(3) limewater
(4) quicklime
177. The hybridizations of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}respectively are
(1) $s p, s p^{2}$ and $s p^{3}$
(2) $s p^{2}, s p$ and $s p^{3}$
(3) $s p, s p^{3}$ and $s p^{2}$
(4) $s p^{2}, s p^{3}$ and $s p$
178. Which of the following fluoro-compounds is most likely to behave as a Lewis base?
(l) CF_{4}
(2) SiF_{4}
(3) BF_{3}
(4) PF_{3}
179. Which of the following pairs of ions is isoelectronic and isostructural?
(1) $\mathrm{SO}_{3}^{2}, \mathrm{NO}_{3}^{-}$
(2) $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
(3) $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(4) $\mathrm{ClO}_{3}, \mathrm{CO}_{3}^{\prime}$
180. In context with beryllium, which one of the following statements is incorrect?
(1) Its salts rarely hydrolyze.
(2) Its hydride is electron-deficient and polymeric.
(3) It is rendered passive by nitric acid.
(4)-It furms $\mathrm{Be}_{2} \mathrm{C}$.

