Mathematical Tools

DISCLAIMER

"The content provided herien are created and owned by various authors and licensed to Sorting Hat Technologies Private Limited ("Company"). The Company disclaims all rights and liabilities in relation to the content. The author of the content shall be solely responsible towards, without limitation, any claims, liabilities, damages or suits which may arise with respect to the same."

Trigonometry

Physics is basically a combination of theory and calcuations. For "calculations", we need to learn some mathematical tools.

Angle :

$\theta=$ angular gap or angle between line L_{1} and L_{2}. By definition,

$$
\text { angle }(\theta)=\frac{\operatorname{Arc}(\ell)}{\operatorname{Radius}(\mathrm{R})}
$$

In above diagram

$$
\theta=\frac{\ell_{1}}{\mathrm{R}_{1}}=\frac{\ell_{2}}{\mathrm{R}_{2}}
$$

The unit of angle is 'radian' (rad.)

If we rotate line in anticlockwise direction
\rightarrow From OA to OC (semi-circle),

$$
\theta_{1}=\frac{\text { length } A B C}{\text { length } O A}=3.141 \ldots . \mathrm{rad}=\pi \mathrm{rad} \approx \frac{22}{7} \mathrm{rad}
$$

\rightarrow From OA to OB (quarter-circle),

$$
\theta_{2}=\frac{\text { arc length } \mathrm{AB}}{\text { radius length } \mathrm{OA}}=1.57 \ldots . \mathrm{rad}=\frac{\pi}{2} \mathrm{rad}
$$

Similarly, for complete circle,

$$
\begin{aligned}
& \text { angle }=\frac{\text { circumference of circle }}{\text { Radius }} \\
& \theta_{\text {circle }}=6.282 \ldots . \mathrm{rad}=2 \pi \mathrm{rad}
\end{aligned}
$$

- Angle can also be measured in 'degree' where

$$
\pi \mathrm{rad}=180^{\circ} \Rightarrow 1 \mathrm{rad}=\frac{180^{\circ}}{\pi} \approx 57.3^{\circ}
$$

or $180^{\circ}=\pi \mathrm{rad} \Rightarrow 1^{\circ}=\left(\frac{\pi}{180}\right) \mathrm{rad}$

For example,

$$
\frac{\pi}{6} \mathrm{rad}=\frac{180^{\circ}}{6}=30^{\circ} \quad \text { and } \quad \frac{\pi}{3} \mathrm{rad}=\frac{180^{\circ}}{3}=60^{\circ}
$$

Trigonometric Ratio (T-Ratio) :

For a right-angled triangle,
Perpendicular (P) is that line which is just opposite to angle (θ), Hypotenuse (H) is that line which is just opposite to 90° angle while other line is base (B).

$$
\begin{aligned}
& P^{2}+B^{2}=H^{2} \\
& \sin \theta=\frac{P}{H} ; \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{H}{P} \\
& \cos \theta=\frac{B}{H} ; \quad \sec \theta=\frac{1}{\cos \theta}=\frac{H}{B} \\
& \tan \theta=\frac{P}{B} ; \quad \cot \theta=\frac{1}{\tan \theta}=\frac{B}{P}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B} \rightarrow \text { Base } \\
& \mathrm{P} \rightarrow \text { Perpendicular } \\
& \mathrm{H} \rightarrow \text { Hypotenuse }
\end{aligned}
$$

Also,

$$
\tan \theta=\frac{P}{B}=\frac{P / H}{B / H} \Rightarrow \tan \theta=\frac{\sin \theta}{\cos \theta}
$$

On measuring, the angle $\theta=37^{\circ}$ and $\beta=53^{\circ}$ For given triangle,

$$
\begin{aligned}
& \tan \theta=\frac{3}{4} \text { while } \tan \beta=\frac{4}{3} \\
& \sin \theta=\frac{3}{5} \text { while } \sin \beta=\frac{4}{5} \\
& \cos \theta=\frac{4}{5} \text { while } \cos \beta=\frac{3}{5}
\end{aligned}
$$

Trigonometric Identities:

$$
\begin{array}{ll}
\frac{\mathrm{P}^{2}}{\mathrm{H}^{2}}+\frac{\mathrm{B}^{2}}{\mathrm{H}^{2}}=\frac{\mathrm{H}^{2}}{\mathrm{H}^{2}} \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\frac{\mathrm{P}^{2}}{\mathrm{~B}^{2}}+\frac{\mathrm{B}^{2}}{\mathrm{~B}^{2}}=\frac{\mathrm{H}^{2}}{\mathrm{~B}^{2}} \Rightarrow \tan ^{2} \theta+1=\sec ^{2} \theta \\
\frac{\mathrm{P}^{2}}{\mathrm{P}^{2}}+\frac{\mathrm{B}^{2}}{\mathrm{P}^{2}}=\frac{\mathrm{H}^{2}}{\mathrm{P}^{2}} \Rightarrow 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta
\end{array}
$$

Commonly used angles and their trigonometric ratios:

| Angle (θ) | 0° | 30° | 37° | 45° | 53° | 60° | 90° | 180° |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin \theta$ | 0 | $\frac{1}{2}$ | $\frac{3}{5}$ | $\frac{1}{\sqrt{2}}$ | $\frac{4}{5}$ | $\frac{\sqrt{3}}{2}$ | 1 | 0 |
| $\cos \theta$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{4}{5}$ | $\frac{1}{\sqrt{2}}$ | $\frac{3}{5}$ | $\frac{1}{2}$ | 0 | -1 |
| $\tan \theta$ | 0 | $\frac{1}{\sqrt{3}}$ | $\frac{3}{4}$ | 1 | $\frac{4}{3}$ | $\sqrt{3}$ | ∞ | 0 |

Trigonometrical formulae :

We remember values of $\sin \theta, \cos \theta$ and $\tan \theta$, for

$$
\theta=\left\{0^{\circ}, 30^{\circ}, 37^{\circ}, 45^{\circ}, 53^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}\right\}
$$

For example : $\sin 30^{\circ}=\frac{1}{2}$
But what if someone asks to calculate value of $\sin 120^{\circ}$.
\rightarrow Then we split the given angle in terms of
$\left\{0^{\circ}, 30^{\circ}, 37^{\circ}, 45^{\circ}, 53^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}\right\}$
For example : $\sin \left(120^{\circ}\right)=\sin \left(90^{\circ}+30^{\circ}\right)=\sin \left(180^{\circ}-60^{\circ}\right)$

- $\sin (2 n \pi+\theta)=\sin \theta$, where $n=0,1,2,3$, \qquad
For example:

$$
\begin{aligned}
\sin 390^{\circ} & =\sin \left(2 \pi+30^{\circ}\right) & & {\left[\because 2 \pi=360^{\circ}\right] } \\
& =\sin \left(2 \mathrm{n} \pi+30^{\circ}\right) & & {[\text { Here, } \mathrm{n}=1] } \\
& =\sin 30^{\circ} & & {\left[\because \sin 30^{\circ}=\frac{1}{2}\right] }
\end{aligned}
$$

Similarly,

- $\cos (2 n \pi+\theta)=\cos \theta$
- $\tan (2 \mathrm{n} \pi+\theta)=\tan \theta$
- $\sin (\pi-\theta)=+\sin \theta$
- $\cos (\pi-\theta)=-\cos \theta$
- $\tan (\pi-\theta)=-\tan \theta$

Find $\sin 120^{\circ}$

Sol. $\sin 120^{\circ}=\sin \left(180^{\circ}-60^{\circ}\right)=\sin \left(\pi-60^{\circ}\right)=+\sin 60^{\circ}=\frac{\sqrt{3}}{2}$

Q. Find $\tan 150^{\circ}$

$$
\text { Sol. } \tan 150^{\circ}=\tan \left(180^{\circ}-30^{\circ}\right)=\tan \left(\pi-30^{\circ}\right)=-\tan 30^{\circ}=-\frac{1}{\sqrt{3}}
$$

Find $\sin 210^{\circ}$

Sol. $\sin 210^{\circ}=\sin \left(180^{\circ}+30^{\circ}\right)=\sin \left(\pi+30^{\circ}\right)=-\sin 30^{\circ}=-\frac{1}{2}$
$\sin (2 \pi-\theta)=-\sin \theta$
$\cos (2 \pi-\theta)=+\cos \theta$
$\tan (2 \pi-\theta)=-\tan \theta$

Find $\sin 330^{\circ}$

Sol. $\sin 330^{\circ}=\sin \left(360^{\circ}-30^{\circ}\right)=\sin \left(2 \pi-30^{\circ}\right)=-\sin 30^{\circ}=-\frac{1}{2}$
$\sin \left(\frac{\pi}{2}+\theta\right)=+\cos \theta$
$\cos \left(\frac{\pi}{2}+\theta\right)=-\sin \theta$
$\tan \left(\frac{\pi}{2}+\theta\right)=-\cot \theta$

Find $\tan 120^{\circ}$

Sol. $\sin \left(120^{\circ}\right)=\sin \left(90^{\circ}+30^{\circ}\right)=\sin \left(\frac{\pi}{2}+30^{\circ}\right)=+\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\sin \left(\frac{\pi}{2}-\theta\right)=+\cos \theta$
$\cos \left(\frac{\pi}{2}-\theta\right)=+\sin \theta$
$\tan \left(\frac{\pi}{2}-\theta\right)=+\cot \theta$

Find $\cos 30^{\circ}$ using above rule

Sol. $\cos 30^{\circ}=\cos \left(90^{\circ}-60^{\circ}\right)=\cos \left(\frac{\pi}{2}-60^{\circ}\right)=+\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=+\cos \theta$
$\tan (-\theta)=-\tan \theta$

Find $\sin \left(-60^{\circ}\right)$

Sol. $\sin \left(-60^{\circ}\right)=-\sin 60^{\circ}=-\frac{\sqrt{3}}{2}$

Maximum and minimum value

In this right-angle triangle $P \leq H$ and $B \leq H$
$\sin \theta=\frac{P}{H}$
$\because P \leq H \quad \Rightarrow \frac{P}{H} \leq 1$

$\therefore \quad \sin \theta \leq 1$
Similarly, for negative angle

$$
\sin \theta \geq-1
$$

Combining above two inequalities

$$
-1 \leq \sin \theta \leq 1
$$

Now, $\cos \theta=\frac{B}{H}$
$\Rightarrow \cos \theta \leq 1$
Considering both negative and positive angles

$$
\begin{aligned}
& -1 \leq \cos \theta \leq 1 \\
& \tan \theta=\frac{P}{B} \\
& -\infty<\tan \theta<\infty
\end{aligned}
$$

Small angle approximation :

In a right-angle triangle, if θ is very small $\mathrm{P} \ll \mathrm{H}$ and $\mathrm{H} \simeq \mathrm{B}$ (see the diagram)
$\therefore \quad$ We consider P as arc and H and B as radius

$\rightarrow \quad \sin \theta=\frac{P}{H}$

$$
\sin \theta=\frac{\text { Arc }}{\text { Radius }}
$$

But we know that θ (in radians) $=\frac{\text { Arc }}{\text { Radius }}$
$\therefore \quad \sin \theta=\theta$, if $\theta \rightarrow 0 \Rightarrow$ ' θ ' should be in radian

Example :

Find value of $\sin 5^{\circ}$

Sol.
First convert 5° into radian.

$$
\begin{aligned}
& 1^{\circ}=\frac{\pi}{180} \mathrm{Rad} \\
& 5^{\circ}=5 \times \frac{\pi}{180} \mathrm{Rad}=\frac{\pi}{36} \mathrm{Rad} \\
& \frac{\pi}{36} \mathrm{Rad} \text { is a small angle }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \sin 5^{\circ}= & \sin \left(\frac{\pi}{36}\right) \\
\sin 5^{\circ} & =\frac{\pi}{36}
\end{aligned}
$$

- $\quad \sin (A+B)=\sin A \cos B+\cos A \sin B$ $\sin (A-B)=\sin A \cos B-\cos A \sin B$
- $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$

Q. Find $\sin 15^{\circ}$ using above rule

$$
\text { Sol. } \begin{aligned}
& \sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
&=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& \sin 15^{\circ}=\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)
\end{aligned}
$$

Q. Find $\sin 75^{\circ}$ using above rule

Sol. $\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)=\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ}$

$$
=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
$$

$$
\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
$$

Q. Find $\sin 120^{\circ}$ using above rule

$$
\text { Sol. } \begin{aligned}
\sin 120^{\circ} & =\sin \left(60^{\circ}+60^{\circ}\right) \\
& =\sin 60^{\circ} \cos 60^{\circ}+\cos 60^{\circ} \sin 60^{\circ} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Find $\cos 120^{\circ}$ using above rule

Sol. $\cos 120^{\circ}=\cos \left(60^{\circ}+60^{\circ}\right)$

$$
\begin{aligned}
& =\cos 60^{\circ} \cos 60^{\circ}-\sin 60^{\circ} \sin 60^{\circ} \\
& =\frac{1}{2} \cdot \frac{1}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}=\frac{1}{4}-\frac{3}{4}=-\frac{1}{2} \\
& \tan 120^{\circ}=\frac{\sin 120^{\circ}}{\cos 120^{\circ}}
\end{aligned}
$$

Find $\cos 106^{\circ}$ using above rule

$$
\text { Sol. } \begin{aligned}
\cos 106^{\circ} & =\cos \left(53^{\circ}+53^{\circ}\right) \\
& =\cos 53^{\circ} \cos 53^{\circ}-\sin 53^{\circ} \sin 53^{\circ} \\
& =\frac{3}{5} \cdot \frac{3}{5}-\frac{4}{5} \cdot \frac{4}{5}=\frac{-7}{25}
\end{aligned}
$$

Sine formula :

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Q. Find \mathbf{x} in adjoining figure

$$
\text { Sol. } \begin{aligned}
& \frac{\sin 90^{\circ}}{10}=\frac{\sin 30^{\circ}}{x} \\
& \Rightarrow x=10 \times \frac{1}{2}=5
\end{aligned}
$$

Find x in given figure

$$
\text { Sol. } \begin{aligned}
& \frac{\sin 45^{\circ}}{10}=\frac{\sin 30^{\circ}}{x} \\
& \Rightarrow x=\frac{10 \times \sin 30^{\circ}}{\sin 45^{\circ}} \\
&=\frac{10 \times 1 / 2}{1 / \sqrt{2}}=5 \sqrt{2}
\end{aligned}
$$

Cosine formula :

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

Find θ in given figure

Sol.

$$
\begin{aligned}
& \cos \theta=\frac{100+75-25}{2 \times 10 \times 5 \sqrt{3}} \\
&=\frac{150}{20 \times 5 \sqrt{3}}=\frac{3}{2 \sqrt{3}} \\
& \cos \theta=\frac{\sqrt{3}}{2} \\
& \theta=30^{\circ} \\
&-\sqrt{a^{2}+b^{2}} \leq a \sin \theta+b \cos \theta \leq+\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

For Example :
$y=2 \sin \theta+3 \cos \theta$
Here $a=2, b=3$

$$
\begin{aligned}
& y_{\max }=\sqrt{2^{2}+3^{2}}=13 \\
& y_{\min }=-\sqrt{13} \\
& -\sqrt{13} \leq 2 \sin \theta+3 \cos \theta \leq \sqrt{13}
\end{aligned}
$$

$\mathbf{y}=\mathbf{3} \sin \theta+\mathbf{4} \cos \theta$
Find maximum value of y.

Sol.

$$
\begin{aligned}
y_{\max } & =\sqrt{3^{2}+4^{2}} \\
& =5
\end{aligned}
$$

Quadratic Equations

An equation of the form,

$$
a x^{2}+b x+c=0, \quad a \neq 0 \text { where }
$$

a, b and c are constants and x is variable is called a quadratic equation.
Number of Solutions = Maximum Power of ' x '
Solutions of equation are values of ' x ' which when put in L.H.S, the L.H.S. will become zero. Here, we have 2 solutions

$$
\begin{aligned}
& \left.x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \right\rvert\, x_{1}+x_{2}=-\frac{b}{a} \\
& \left.x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \right\rvert\, x_{1} \cdot x_{2}=+\frac{c}{a}
\end{aligned}
$$

For example :
In equation,

$$
\begin{aligned}
& 2 x^{2}+3 x-6=0 \\
& a=2, b=3, c=-6 \\
& x_{1}=\frac{-3+\sqrt{3^{2}-4 \times 2 \times(-6)}}{2 \times 2}=\frac{-3+\sqrt{57}}{4} \\
& x_{2}=\frac{-3-\sqrt{3^{2}-4 \times 2 \times(-6)}}{2 \times 2}=\frac{-3-\sqrt{57}}{4} \\
& x_{1}+x_{2}=\frac{-3}{2} \\
& x_{1} \cdot x_{2}=\frac{-6}{2}=-3
\end{aligned}
$$

1) If $b^{2}-4 a c>0$

Two real and distinct solutions or roots
2) If $b^{2}-4 a c<0$.

Two imaginary and distinct solutions or roots
3) If $b^{2}-4 a c=0$

Real and equal roots

- $\sqrt{-4}=\sqrt{4 \times(-1)}=2 \times \sqrt{-1}=2 \mathrm{i}, \quad$ Where $\mathrm{i}^{2}=-1$
- $x^{2}+2 x-8=0$

Expression
Same equation can be represent as $\frac{x^{2}+2 x-10}{\text { Expression }}=-2, \quad \underset{\text { Expression }}{x^{2}+2 x}=8$

- When expression is equated with something it becomes equation.

$$
\begin{array}{ll}
x^{2}+2 x-8=0 \rightarrow \text { Equation } & \text { [Expression equated with } 0] \\
x^{2}+2 x=8 \rightarrow \text { Equation } & \text { [Expression equated with } 8]
\end{array}
$$

- $y=x^{2} \Rightarrow$ Equation of Parabola

When $y=4$
$\Rightarrow \quad x^{2}=4$
$\Rightarrow \quad x_{1}=+2, x_{2}=-2$.
When $y=9$
$\Rightarrow \quad x^{2}=9$
$\Rightarrow x_{1}=+3, x_{2}=-3$

Origin shifting :

$$
y=x^{2} \text { or } x^{2}-y=0
$$

Now the graph is pulled towards right by 2 units.

Initially y was zero at $\mathrm{x}=0$
But now y is zero at $x=2$
Everywhere x will be replaced by $(x-2)$
New equation $\Rightarrow y=(x-2)^{2}$

Initial equation: $y=x^{2}$

$$
y=9 \rightarrow \left\lvert\, \begin{aligned}
& x_{1}=+3 \\
& x_{2}=-3
\end{aligned}\right.
$$

New equation: $y=(x-2)^{2}$

$$
y=9 \rightarrow \left\lvert\, \begin{aligned}
& x_{1}=+5 \\
& x_{2}=-1
\end{aligned}\right.
$$

- Similarly, if curve is shifted by 'a' unit in left direction. Then new equation of parabola is $y=$ $(x+a)^{2}$
- $y=x^{2}$ parabola is shifted downwards (towards negative y) by 2 units.

$$
\begin{aligned}
& y=x^{2}, \\
& \text { replace } y \text { with } y+2 \\
& \begin{array}{l}
\therefore \quad(y+2)=x^{2} \\
y=x^{2}-2 \\
y=0
\end{array} \\
& \text { For } y=x^{2} \\
& \qquad x^{2}=0 \Rightarrow x=0 \\
& \text { For } y=x^{2}-2 \\
& \Rightarrow \quad x^{2}-2=0 \\
& \quad x_{1}=+\sqrt{2}, x_{2}=-\sqrt{2}
\end{aligned}
$$

- Similarly, if parabola $y=x^{2}$ is pulled in upward direction (+y) by 'b' units, then new equation of parabola is $(y-b)=x^{2} \Rightarrow y=x^{2}+b$
$y=x^{2}$ is pulled by 2 units towards $+x$ direction and 1 unit toward $-y$ direction. Find new equation of parabola.

Sol.

$$
y=x^{2} \longrightarrow \underset{2}{ } y=(x-2)^{2} \xrightarrow[\downarrow 1]{ } y+1=(x-2)^{2}
$$

$$
\begin{aligned}
& y+1=(x-2)^{2} \\
\Rightarrow & y+1=x^{2}+4-4 x \\
\Rightarrow & y=x^{2}-4 x+3 \\
y= & x^{2}-4 x+3 \rightarrow \text { Parabola }
\end{aligned}
$$

Checking for $\mathrm{y}=0$
$\Rightarrow x^{2}-4 x+3=0 \rightarrow$ Quadratic Equation
$\Rightarrow x^{2}-x-3 x+3=0$
$\Rightarrow x(x-1)-3(x-1)=0$
$\Rightarrow \quad(x-1)(x-3)=0$
$\Rightarrow x=1$ and $x=3$

Exact Graph \Rightarrow

$y=x^{2}$

Now if above curve is pulled upwards by 4 units and towards right by 3 units, draw the new graph.

Sol. $y=-x^{2} \xrightarrow{\uparrow 4} y-4=-x^{2} \xrightarrow{3} y-4=-(x-3)^{2}$

$$
\begin{array}{lll}
\Rightarrow y-4=-(x-3)^{2} & \Rightarrow y=4-\left(x^{2}+9-6 x\right) & \Rightarrow y=-x^{2}+6 x-5 \\
y=0 \Rightarrow-x^{2}+6 x-5=0 & \Rightarrow x^{2}-6 x+5=0 & \Rightarrow x^{2}-5 x-x+5=0 \\
\Rightarrow x(x-5)-1(x-5)=0 & \Rightarrow(x-5)(x-1)=0 & x_{1}=1, x_{2}=5
\end{array}
$$

Roots of quadratic equation (x_{1}, x_{2}) represent intersection of parabola with x-axis.

Binomial Theorem

As per bionomial theorem, we can expand $(a+b)^{n}$ as,

$$
\begin{aligned}
(a+b)^{n}=(1) a^{n} b^{0}+(n) a^{n-1} b^{1}+\frac{n(n-1)}{1 \times 2} a^{n-2} b^{2} & +\frac{n(n-1)(n-2)}{1 \times 2 \times 3} a^{n-3} b^{3} \\
& +\frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4} a^{n-4} b^{4}+\ldots
\end{aligned}
$$

After few terms coefficient of $\mathrm{a}^{()} \mathrm{b}^{()}$will become zero, then stop writing next terms.

For example :

$$
(a+b)^{2}=1 a^{2} b^{0}+2 a^{2-1} b^{1}+\frac{2(2-1)}{1 \times 2} a^{2-2} b^{2}+\frac{2(2-1)(2-2)^{0}}{1 \times 2 \times 3} a^{2-3} b^{3}
$$

Here, $\mathrm{n}=2$

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=1 a^{3} b^{0}+3 a^{3-1} b^{1}+\frac{3(3-1)}{2} a^{3-2} b^{2}+\frac{3(3-1)(3-2)}{2 \times 3} a^{3-3} b^{3}+\frac{3(3-1)(3-2)(3-3)}{2 \times 3 \times 4} a^{3-4} b^{4}
\end{aligned}
$$

Here, $n=3$

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

Similarly, expansion of $(a+b)^{4},(a+5)^{5},(a+b)^{6}, \ldots$ can be written.

- $(99)^{6}=(100-1)^{6}=(a+b)^{n}=$
$a=100$
$b=-1$
$\mathrm{n}=6$
- $(1+x)^{n}=1^{n} x^{0}+n 1^{(n-1)} x^{1}+\frac{n(n-1)}{2} 1^{(n-2)} x^{2}+\frac{n(n-1)(n-2)}{2 \times 3} 1^{(n-3)} x^{3}+\ldots$
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\frac{n(n-1)(n-2)}{2 \times 3} x^{3}+\ldots$
Now, suppose ' x ' is very small $(x \rightarrow 0)$
$\Rightarrow x^{2}$ is very very small
$\Rightarrow x^{3}$ is very very very small
Ignoring very small terms
$(1+x)^{n}=1+n x \Leftarrow$ Binomial approximation.

In gravitation, approximae the force on \mathbf{m}.
Mass of earth $=\mathbf{m}_{\mathbf{e}}$
Radius of earth $\mathbf{R}_{\mathrm{e}} \mathbf{= 6 4 0 0} \mathbf{~ k m}$
$h=10 \mathrm{~m}$

Sol. $\left(\frac{h}{R_{e}}\right)$ is very small

Force acting on particle of mass $m, F=\frac{G m_{e} m}{\left(R_{e}+h\right)^{2}}=\frac{G m_{e} m}{R_{e}^{2}\left(1+\frac{h}{R_{e}}\right)^{2}}$

$$
\begin{aligned}
& F=\frac{G m_{e} m}{R_{e}^{2}}\left(1+\frac{h}{R_{e}}\right)^{-2}=\frac{G m_{e} m}{R_{e}^{2}}\left[1+(-2) \frac{h}{R_{e}}\right],(\text { Here, } x=-2) \\
& F=\frac{G m_{e} m}{R_{e}^{2}}\left[1-\frac{2 h}{R_{e}}\right]
\end{aligned}
$$

Find the value of (0.99) ${ }^{\mathbf{2}}$

Sol. $(0.99)^{2}=(1-0.01)^{2}=\left(1-\frac{1}{100}\right)^{2}=(1-x)^{n}$
$[1+(-x)]^{n}=1+n(-x)=1-n x$
$(0.99)^{2}=1-2 \times \frac{1}{100}=1-\frac{2}{100}=\frac{98}{100}=0.98$

Find the value of (0.99) ${ }^{7}$

Sol. $(0.99)^{7}=\left(1-\frac{1}{100}\right)^{7}=1-7 \cdot\left(\frac{1}{100}\right)=1-\frac{7}{100}=\frac{93}{100} \simeq 0.93$

Logarithm

A logarithm is the power to which a number must be raised in order to get some other number e.g. The base ten logarithm of 100 is 2 because ten raised to the power of two is 100 .

$$
\begin{aligned}
& 2^{4}=16 \Rightarrow \log _{2} 16=4 \\
& 5^{2}=25 \Rightarrow \log _{5} 25=2 \\
& a^{b}=c \Rightarrow \log _{a} c=b \\
& 10^{1}=10 \Rightarrow \log _{10} 10=1 \\
& 100,000=10^{5} \Rightarrow \log _{10} 100,000=5 \\
& \log _{10} 1000=3 \\
& \log _{4} 64=3 \\
& \log _{2} 64=6
\end{aligned}
$$

Rules:

$\log (m \times n)=\log m+\log n$
$\log \left(\frac{m}{n}\right)=\log m-\log n$
$\log m^{n}=n \log m$
$\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$

Examples:

a. $\log _{4} 64=3$
b. $\log _{4} 64=\frac{\log _{2} 64}{\log _{2} 4}=\frac{6}{2}=3$
c. $\log _{4} 64=\frac{\log _{8} 64}{\log _{8} 4}=\frac{2}{(2 / 3)}=3$
d. $\log _{8} 4=x \quad \Rightarrow(8)^{x}=4 \quad \Rightarrow(8)^{2 / 3}=4$
$\therefore \quad x=\frac{2}{3}=\log _{8} 4$

Find the value of $\log _{10}(5000)$

$$
\begin{gathered}
\log _{10}(5000)=\log _{10}(5 \times 1000) \\
=\log _{10} 5+\log _{10} 1000 \\
\log _{10}(5000)=0.6989+3=3.6989 \\
\Rightarrow 10^{3.6989}=5000
\end{gathered}
$$

Values to remember :

$\log _{10} 2=0.3010, \log _{10} 3=0.4771, \log _{10} 5=0.6989, \log _{10} 7=0.8450$

Find the value of $\log _{10}(2500)$

$$
\text { Sol. } \begin{aligned}
\log _{10} 2500 & =\log _{10}(5 \times 5 \times 100) \\
& =\log _{10} 5+\log _{10} 5+\log _{10} 100 \\
& =0.6989+0.6989+2 \\
& =3.3978
\end{aligned}
$$

$\log _{e} 2500=? ?$

Sol. $e=2.7(2.7)^{x}=2500 \Rightarrow x=$?

$$
\begin{aligned}
& \log _{2.7}(2500)=? ? \\
& \log _{e} M=2.303 \log _{10} M \\
& \log _{e} 2500=2.303 \times \log _{10} 2500 \\
& \log _{e} 2500=2.303 \times 3.3978
\end{aligned}
$$

Examples:

a. $\log _{10} 25=\log _{10} 5^{2}$

$$
\begin{aligned}
& =2 \log _{10} 5 \quad\left[\log m^{n}=n \log m\right] \\
& =2 \times 0.6989
\end{aligned}
$$

b. $\log _{10} 42=\log _{10}(2 \times 3 \times 7)$

$$
\begin{aligned}
& =\log _{10} 2+\log _{10} 3+\log _{10} 7 \\
& =0.3010+0.4771+0.8450=1.6321
\end{aligned}
$$

c. $\log _{e} 42=2.303 \log _{10} 42=2.303 \times 1.6321$
d. $\log _{5} 42=\frac{\log _{10} 42}{\log _{5} 42}=\frac{1.6321}{0.6989}$
e. $\log _{10} 1 / 8=\log _{10}\left(\frac{1}{2^{3}}\right)=\log _{10} 2^{-3}=-3 \log _{10} 2$

$$
=-3 \times 0.3010=-0.9030
$$

f. $\quad \log _{10} \sqrt{24}=\frac{1}{2} \log _{10} 24=\frac{1}{2} \log _{10}(2 \times 3 \times 2 \times 2)$

$$
=\frac{1}{2} \log _{10}\left(2^{3} \times 3\right)=\frac{1}{2}\left[3 \log _{10} 2+\log _{10} 3\right]=\frac{1}{2}[3 \times 0.3010+0.4771]=0.6901
$$

g. $\log _{10}\left(\frac{1}{2}\right)=-\log _{10} 2=-0.3010$
h. $\log _{e}\left(\frac{1}{2}\right)=-2.303 \log _{10} 2=-0.693$

Series

Arithmetic Progression (A.P.)

A series of the form of,

progression.
where, $\quad d=\left(2^{\text {nd }}\right.$ term $)-\left(1^{\text {st }}\right.$ term $)=\left(3^{\text {rd }}\right.$ term $-2^{\text {nd }}$ term $)=\ldots . .$. is known as common difference.

For example :
$3,5,7,9,11, \ldots \ldots$.
$1^{\text {st }}$ term, $\mathrm{a}=3$
$2^{\text {nd }}$ term, $a+d=5$
Common difference = $5-3=2$
We can find $\mathrm{n}^{\text {th }}$ term as,
$n^{\text {th }}$ term $=a+(n-1) d=3+(n-1) 2$
$4^{\text {th }}$ term $=3+(4-1) 2=3+6=9$
$5^{\text {th }}$ term $=3+(5-1) 2=3+8=11$
$1,2,3,4,5, \ldots \ldots, n, \ldots \ldots$
Sum of n terms, $S=\frac{n}{2}[2 a+(n-1) d]$

For the given A.P,
3, 5, 7, 9, 11 ,
Calculate sum upto 4 terms

Sol.
$S=\frac{4}{2}[2 \times 3+(4-1) 2]=2[6+6]=24$
Check: $3+5+7+9=24$

Geometric progression (G.P) :

A series of the form,

Where, common ratio $=\frac{2^{\text {nd }} \text { term }}{1^{\text {st }} \text { term }}=\frac{3^{\text {rd }} \text { term }}{2^{\text {nd }} \text { term }}=\ldots . .=\frac{n^{\text {th }} \text { term }}{(n-1)^{\text {th }} \text { term }}=r$
For example :
If $1^{\text {st }}$ term, $\mathrm{a}=4 \&$ Common ratio, $r=\frac{1}{2}$
then G.P. is $4,2,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{5}$,
We can find $\mathrm{n}^{\text {th }}$ term of an G.P. as,
$\mathrm{n}^{\text {th }}$ term $=\mathrm{a} \cdot \mathrm{r}^{\mathrm{n}-1}=4\left(\frac{1}{2}\right)^{\mathrm{n}-1}$
e.g., $5^{\text {th }}$ term $=4\left(\frac{1}{2}\right)^{5-1}=4\left(\frac{1}{2}\right)^{4}=\frac{4}{16}=\frac{1}{4}$

Sum of \boldsymbol{n} terms of G.P :

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

- For G.P. series having infinite number of terms

If $r<1, S_{\infty}=\frac{a}{1-r}$
If $r>1, S_{\infty}=\infty$

$$
\text { Q } \quad 2,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \ldots . . . \infty . \text { Find sum. }
$$

Sol. Here $r<1$ for this ∞ series $\left(r=\frac{1}{2}\right)$

$$
\text { So, } S=\frac{a}{1-r}=\frac{4}{1-\frac{1}{2}}=8
$$

$$
S=8
$$

Co-Ordinate Geometry

Let us consider two points P and Q in XY plane as shown.

x-coordinate of point $P=x_{0}=$ Perpendicular distance of ' P ' from y-axis y-coordinate of point $P=y_{0}=$ Perpendicular distance of ' P ' from x-axis x-coordinate of point $Q=x$ ' $=$ Perpendicular distance of ' Q ' from y-axis y-coordinate of point $Q=y$ ' = Perpendicular distance of ' Q ' from x-axis

Distance Formula :

Distance between points P and Q

$$
\mathrm{PQ}=\sqrt{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}}
$$

\therefore Distance between two points having co-ordinates $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by

$$
\text { Distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Straight Line :

Equation of straight line $\Rightarrow y=m x+c$
c = Intercept on y-axis
$\mathrm{m}=$ slope $=\tan \theta$
where ' θ ' is angle made by line with + ve x-axis.
If m is positive
$\Rightarrow\left\{\begin{array}{l}x \text { increases then } y \text { also increases } \\ x \text { decreases then } y \text { also decreases }\end{array}\right.$ If m is negative
$\Rightarrow\left\{\begin{array}{l}x \text { increases then } y \text { decreases } \\ x \text { decreases then } y \text { increases }\end{array}\right.$

For example :

Case a.

Here C is positive when moving from $A \rightarrow B$,
x increases but y decreases $\Rightarrow m<0$
When moving from $B \rightarrow A$,
x decreases but y increases $\Rightarrow m<0$
$\therefore \quad$ Slope of given line is negative.
$\therefore \quad$ Equation of given line could be

$$
y=-2 x+5
$$

$$
m=-2(-v e) ; C=+5(+v e)
$$

Case b.

Here C is negative
When moving from $A \rightarrow B$
$x \rightarrow$ increases and $y \rightarrow$ increases
$\Rightarrow \quad \mathrm{m}>0$
When moving from $B \rightarrow A$
$x \rightarrow$ decreases and $y \rightarrow$ decreases
$\Rightarrow \quad \mathrm{m}>0$
$\therefore \quad$ Equation of given line could be

$$
\begin{aligned}
& y=+3 x-2 \\
& m=+3(+v e) \\
& c=-2(-\mathrm{ve})
\end{aligned}
$$

- How to write the equation of given line ?

Let, the equation of the given line is, $y=m x+c$

Slope $=m=\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
See the triangle
$\therefore m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{6-3}=\frac{4}{3}$
$m=\frac{4}{3}$
$\therefore \quad y=\frac{4}{3} x+C$

As point $(3,1)$ lies on straight line, it must satisfy the equation of straight line i.e.
When $x=3$, we get $y=1$

$$
\begin{aligned}
1 & =\frac{4}{3} \cdot 3+C \\
\Rightarrow C & =1-4=-3 \\
\Rightarrow y & =\frac{4}{3} x-3
\end{aligned}
$$

[Point $(6,5)$ will also satisfy the equation of straight line]

Find equation of straight line

Sol. Let, $\left(x_{2}, y_{2}\right)=(1,9)$ and $\left(x_{1}, y_{1}\right)=(7,1)$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-1}{1-7}=\frac{8}{-6}=\frac{-4}{3} \\
& y=m x+c \\
& y=\frac{-4}{3} x+c
\end{aligned}
$$

Now, Point $(1,9)$ will satisfy this equation.

$$
\begin{aligned}
& \Rightarrow 9=\frac{-4}{3} \cdot 1+C \Rightarrow C=9+\frac{4}{3}=\frac{31}{3} \\
& \Rightarrow y=\frac{-4}{3} x+\frac{31}{3} \Rightarrow 3 y=-4 x+31
\end{aligned}
$$

- Another way to write equation of straight line is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Here, $x_{1}=7, y_{1}=1, x_{2}=1, y_{2}=9$
$\Rightarrow y-1=\frac{9-1}{1-7}(x-7) \Rightarrow y-1=\frac{-4}{3}(x-7)$
$\Rightarrow 3 y-3=-4 x+28 \Rightarrow 3 y+4 x=31$

- If two lines having slopes m_{1} and m_{2} are perpendicular to each other, then

$$
m_{1} \cdot m_{2}=-1
$$

$m_{1} \cdot m_{2}=-1$

For example :
If Slope $=2$
then, $\frac{\Delta y}{\Delta x}=2 \Rightarrow \Delta y=2 \Delta x$
If x increases by 1 then y increases by 2

For slop, $\mathrm{m}=\frac{4}{3}=\tan \theta=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}$
$\Delta y=\frac{4}{3} \Delta x$

- If Δx is very small then

$$
\text { Slope }=m=\tan \theta=\frac{\Delta y}{\Delta x}=\frac{d y}{d x}
$$

$$
\frac{d y}{d x}=\text { differentiation }
$$

- $\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\mathrm{m}=$ Slope $=\tan \theta=\frac{\mathrm{dy}}{\mathrm{dx}}$
$=$ Rate of change of y w.r.t x
$=$ Differentiation of y w.r.t x

29.

Differentiation

FUNCTION

A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.
e.g., $y=t^{2}+t$

On changing ' t ', y changes
$\therefore y$ is a function of ' t ' $\Rightarrow y=f(t)$
Conversely, on changing y, t changes
$\therefore \quad t$ is a function of $y \Rightarrow t=g(y)$

- $y=x^{2}$
$\Rightarrow y=f(x)$ and $x=g(y)$
- $y=\sin x$
$y=f(x)$
- $y=x^{2}+x$ and $x=2 t$
$y=x^{2}+x=(2 t)^{2}+(2 t)=4 t^{2}+2 t$
Here, $y=f(x)$ and $x=g(t)$
Combining the two relations,

$$
\begin{aligned}
& y=f(x)=f[g(t)] \quad[\because x=g(t)] \\
& y=f[g(t)]=f o g(t) \leftarrow \text { Composite function }
\end{aligned}
$$

DIFFERENTIAL CALCULUS

We know that, slope $=\tan \theta=\frac{\Delta y}{\Delta x} \quad$ [when slope is constant]
and, slope $=\tan \theta=\frac{d y}{d x} \quad$ [when slope changes]

$$
\text { Now, } \begin{aligned}
\frac{d y}{d x} & =\text { Rate of change of ' } y \text { ' w.r.t ' } x \text { ' } \\
& =\text { Differentiation of ' } y \text { ' w.r.t ' } x \text { ' }
\end{aligned}
$$

- Slope at point (1)

We can't get correct value of slope by taking big interval for a curved graph.
$\therefore \frac{\Delta y}{\Delta x} \neq$ correct slope

$$
\frac{d y}{d x}=\text { more correct slope (for very small }
$$

interval)

Similarly, by calculating $\frac{d y}{d x}$ at point (2), we can get slope at point 2

- Changing slope = curve

Constant slope $=$ straight line

- $y=x^{2}$, calculate slope at $x=1$ and $x=2$

$$
\left(\frac{d y}{d x}\right)_{x=1}<\left(\frac{d y}{d x}\right)_{x=2}
$$

It is difficult to find slope $\left(\frac{d y}{d x}\right)$ by drawing graph for every function. To ease it, Newton developed formulae in calculus book. We will use those formulae to calculate $\frac{\text { ' } d y \text { ' }}{d x}$ for functions whose graphs cannot be drawn easily.

Functions	Differentiation	Examples
$y=x^{n}$	$\frac{d y}{d x}=n x^{n-1}$	$y=x^{7} \rightarrow \frac{d y}{d x}=7 x^{7-1}=7 x^{6}$
$y=x$	$\frac{d y}{d x}=1$	$y=x^{1} \rightarrow \frac{d y}{d x}=1 \cdot x^{1-1}=1 \cdot x^{0}=1$
$y=a x$	$\frac{d y}{d x}=a$	$y=7 x \rightarrow \frac{d y}{d x}=7 \cdot \frac{d x}{d x}=7 \cdot 1=7$
$y=\sin x$	$\frac{d y}{d x}=\cos x$	
$y=\cos x$	$\frac{d y}{d x}=-\sin x$	
$y=\tan x$	$\frac{d y}{d x}=\sec ^{2} x$	
$y=\operatorname{cosec} x$	$\frac{d y}{d x}=-\operatorname{cosec} x \cdot \cot x$	
$y=\sec x$	$\frac{d y}{d x}=\sec x \tan x$	
$y=\cot x$	$\frac{d y}{d x}=-\operatorname{cosec}^{2} x$	
$y=a^{x}$	$\frac{d y}{d x}=a^{x} \cdot \log _{e} a$	$\begin{aligned} & y=7^{x} \rightarrow \frac{d y}{d x}=7^{x} \cdot \log _{e} 7=7^{x} \ln 7, \\ & e \simeq 2.7 \end{aligned}$
$y=e^{x}$	$\frac{d y}{d x}=e^{x}$	$y=e^{x} \rightarrow \frac{d y}{d x}=e^{x} \log _{e} e=e^{x} \cdot 1=e^{x}$
$y=\log _{e} x=\ln x$	$\frac{d y}{d x}=\frac{1}{x}$	
$y=\sin ^{-1} x$	$\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$	
$y=\sec ^{-1} x$	$\frac{d y}{d x}=\frac{1}{\|x\| \sqrt{x^{2}-1}}$	
$y=\tan ^{-1} x$	$\frac{d y}{d x}=\frac{1}{1+x^{2}}$	

Rules:

- $y=$ const. $\Rightarrow \frac{d y}{d x}=0$
- $y=x \quad \Rightarrow \frac{d y}{d x}=1$
- $y=u+v$, where $u=f(x)$ and $v=g(x)$
- $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$

For example,

a. $y=x^{2}+\sin x$

Here $u=x^{2}, v=\sin x$
then, $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}=2 x+\cos x$
b. $y=c \times u$, where $c=$ constant and $u=f(x)$
then, $\frac{d y}{d x}=c \cdot \frac{d u}{d x}$
c. $y=3 \sin x$
then, $\frac{d y}{d x}=3 \cdot \frac{d}{d x}(\sin x)=3 \cos x$

Product Rule :

For $y=u \times v$, where $u=f(x)$ and, $v=g(x)$

$$
\frac{d y}{d x}=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x}
$$

For example,
If $y=x^{2} \sin x$
then, $\frac{d y}{d x}=x^{2} \frac{d}{d x}(\sin x)+\sin x \frac{d}{d x}\left(x^{2}\right)$
$\frac{d y}{d x}=x^{2} \cdot \cos x+\sin x \cdot 2 x=x[x \cos x+2 \sin x]$

Quotient Rule :

- $y=\frac{u}{v}$, where $u=f(x)$ and, $v=g(x)$
$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}$

For example,
If $y=\frac{\sin x}{x^{2}}$,
then, $\frac{d y}{d x}=\frac{x^{2} \cdot \cos x-\sin x \cdot 2 x}{x^{4}}$

Q. If $y=\frac{e^{x}}{x^{3}}$, then find $\frac{d y}{d x}$

Sol.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{3} \frac{d}{d x}\left(e^{x}\right)-e^{x} \frac{d}{d x}\left(x^{3}\right)}{\left(x^{3}\right)^{2}}=\frac{x^{3} \cdot e^{x}-e^{x} \cdot 3 x^{2}}{x^{6}}=\frac{x^{2}(x-3) e^{x}}{x^{6}} \\
& \frac{d y}{d x}=\frac{(x-3) e^{x}}{x^{4}}
\end{aligned}
$$

Q. If $y=x^{3} \cdot \tan x$, then find $\frac{d y}{d x}$

Sol. $\frac{d y}{d x}=x^{3} \cdot \frac{d}{d x}(\tan x)+\tan x \cdot \frac{d}{d x}\left(x^{3}\right)$

$$
=x^{3} \cdot \sec ^{2} x+\tan x \cdot\left(3 x^{2}\right)
$$

$$
=x^{2}\left(x \sec ^{2} x+3 \tan x\right)
$$

$$
\text { If } y=\sqrt{2 x}, \frac{d y}{d x}=?
$$

Sol. $y=\sqrt{2 x}=\sqrt{2} \cdot x^{1 / 2} \quad$ (Here, $\left.n=1 / 2\right)$

$$
\begin{gathered}
\frac{d y}{d x}=\sqrt{2} \frac{d}{d x}\left(x^{1 / 2}\right)=\sqrt{2} \cdot \frac{1}{2} \cdot x^{\frac{1}{2}-1}=\frac{\sqrt{2}}{2} \cdot x^{\frac{-1}{2}} \\
\frac{d y}{d x}=\frac{1}{\sqrt{2 x}}
\end{gathered}
$$

Chain Rule :

In calculus, the chain rule is a formula to compute the derivative of a composite function.
$\rightarrow y=4 \sin (3 x)$

$$
\frac{d y}{d x}=?
$$

Let, $\mathrm{t}=3 \mathrm{x}$
$\ldots(1) \Rightarrow \frac{d t}{d x}=3$
$y=4 \sin t$
\ldots (2) $\Rightarrow \frac{d y}{d t}=4 \frac{d}{d t}(\sin t)=4 \cos t$

$$
\begin{aligned}
& \frac{d y}{d t} * \frac{d t}{d x}=\frac{d y}{d x} \\
\Rightarrow & \frac{d y}{d x}=4 \cos t \cdot 3=12 \cos t \Rightarrow \frac{d y}{d x}=12 \cos (3 x)
\end{aligned}
$$

$$
y=4 e^{x^{2}-2 x} \quad\left[y=e^{x}, \frac{d y}{d x}=e^{x}\right]
$$

$$
\text { Find } \frac{d y}{d x}=?
$$

Sol. $t=x^{2}-2 x \Rightarrow \frac{d t}{d x}=2 x-2$

$$
y=4 e^{t} \quad \Rightarrow \frac{d y}{d t}=4 \cdot e^{t}
$$

$\frac{d y}{d x}=\frac{d y}{d t} * \frac{d t}{d x}$
$=4 e^{t} \cdot(2 x-2)$
$=4 \mathrm{e}^{\mathrm{x}^{2}-2 x} \cdot(2 x-2)$

Q. $y=\ln (\cos 3 x)$, find $\frac{d y}{d x}$.

$$
\text { Q. } y=\sqrt{\log _{e} x}=\left(\log _{e} x\right)^{1 / 2} \text {. Find } \frac{d y}{d x}
$$

$$
\text { Sol. } t=\log _{e} x \quad \Rightarrow \frac{d t}{d x}=\frac{1}{x}
$$

$$
y=t^{1 / 2} \quad \Rightarrow \frac{d y}{d t}=\frac{1}{2} \cdot t^{-1 / 2}=\frac{1}{2 \sqrt{t}}
$$

$$
\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{1}{2 \sqrt{t}} \cdot \frac{1}{x}
$$

$$
\begin{align*}
& \text { Sol. } P=3 x \tag{i}\\
& \Rightarrow \frac{d P}{d x}=3 \\
& t=\cos 3 x=\cos P \\
& \Rightarrow \frac{d t}{d P}=-\sin P \tag{ii}\\
& y=\ell n t \\
& \Rightarrow \frac{d y}{d t}=\frac{1}{t} \tag{iii}\\
& \underbrace{\frac{d y}{d t} \times \frac{d t}{d P} \times \frac{d P}{d x}}_{\text {Chain }}=\frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{1}{t} \times 3 \times(-\sin P) \\
& =\frac{1}{\cos 3 x} \cdot 3 \cdot(-\sin 3 x) \\
& \frac{d y}{d x}=-3 \tan 3 x
\end{align*}
$$

Maxima-Minima :

$y=f(x)$
Maxima: Value of y at that point is greater than values of y at immediate points in the left and right.

Minima : Value of y at minima is less than values of y at immediate points in the left and right.

There can be many number of maxima and minima in a single curve. That is why it is also called as local maxima and local minima.

If on increasing x, y also increases.
$\Rightarrow d x>0$ then $d y>0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}>0$
or If on decreasing x, y also decreases.
$\Rightarrow d x<0$ then $d y<0$
$\Rightarrow \frac{d y}{d x}>0$
Similarly, If on increasing x, y decreases or on decreasing x, y increases
$\Rightarrow d x>0$ then $d y<0$ or $d x<0$ then $d y>0$
$\Rightarrow \frac{d y}{d x}<0$

Maxima :

At maxima, slope, $m=0$

$$
\begin{equation*}
\frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

$\frac{d^{2} y}{d x^{2}}=$ Double differentiation
Also as x increases, m decreases

$$
\begin{align*}
& (+v e \rightarrow 0 \rightarrow-v e) \\
& \therefore \quad \frac{d m}{d x}<0, m=\frac{d y}{d x} \Rightarrow \frac{d}{d x}\left(\frac{d y}{d x}\right)<0 \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}<0 \tag{2}
\end{align*}
$$

Minima :

At minima, slope $m=0$

$$
\begin{equation*}
\frac{d y}{d x}=0 \tag{1}
\end{equation*}
$$

Also, as x increases, m increases

$$
\begin{align*}
& \left(-v_{e} \rightarrow 0 \rightarrow+v_{e}\right) \\
\therefore & \frac{d m}{d x}>0, m=\frac{d y}{d x} \\
\Rightarrow & \frac{d}{d x}\left(\frac{d y}{d x}\right)>0 \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}>0 \tag{2}
\end{align*}
$$

$y=5 x^{2}-2 x+1$, find maxima or minima.

Sol.

$$
m=\frac{d y}{d x}=10 x-2
$$

At maxima/minima, $\frac{d y}{d x}=0$
$\Rightarrow 10 x-2=0 \Rightarrow x=\frac{2}{10}=\frac{1}{5}$

At $x=\frac{1}{5}$ there can be maxima or minima.
$\frac{d m}{d x}=\frac{d^{2} y}{d x^{2}}=+10$
As $\frac{d^{2} y}{d x^{2}}>0$,
So, at $x=\frac{1}{5}$, there is a minima.
$y_{\text {min }}=5\left(\frac{1}{5}\right)^{2}-2\left(\frac{1}{5}\right)+1 \Rightarrow y=\frac{4}{5}$

For $y=x^{3}-3 x^{2}$, find \max / \min.

Sol.

$$
\frac{d y}{d x}=3 x^{2}-6 x
$$

At maxima or minima, $\frac{d y}{d x}=0$
$\Rightarrow 3 x^{2}-6 x=0$
$\Rightarrow 3 x(x-2)=0 \quad \left\lvert\, \begin{aligned} & x=0 \rightarrow \max / \min \\ & x=2 \rightarrow \max / \min \end{aligned}\right.$

Let's check for maxima or minima.

$$
\begin{aligned}
& \frac{d m}{d x}=\frac{d^{2} y}{d x^{2}}=6 x-6 \\
& \text { At } x=0 \Rightarrow \frac{d^{2} y}{d x^{2}}=-6 \\
& \text { As } \frac{d^{2} y}{d x^{2}}<0 \text { at } x=0 \\
& \text { So, at } x=0 \text {, there is a maxima. } \\
& y_{\max }=0^{3}-3(0)^{2}=0 \\
& \text { At } x=2, \frac{d^{2} y}{d x^{2}}=+6 \\
& \\
& \text { So, at } x=2, \frac{d^{2} y}{d x^{2}}>0 \\
& \therefore \quad \text { At } x=2, \text { there is a minima } \\
& \text { ymin }=2^{3}-3(2)^{2}=-4
\end{aligned}
$$

Q. $y=\sin x+\cos (2 x)$, find $\frac{d^{2} y}{d x^{2}}$.

Sol. For $y=\sin x+\cos (2 x)$

$$
\frac{d y}{d x}=\frac{d}{d x}(\sin x)+\frac{d}{d x}(\cos 2 x)=\cos x+\underbrace{\frac{d}{d x}(\cos 2 x)}_{\text {Chain Rule }}
$$

Let $z=\cos 2 x$
and, $t=2 x \rightarrow \frac{d t}{d x}=2$

$$
\begin{aligned}
& z=\cos t \rightarrow \frac{d z}{d t}=-\sin t \\
& \frac{d}{d x}(\cos 2 x)=\frac{d z}{d x}=\frac{d z}{d t} \cdot \frac{d t}{d x}=-\sin t \cdot 2 \\
& \frac{d}{d x}(\cos 2 x)=-2 \sin 2 x \Rightarrow \frac{d y}{d x}=\cos x-2 \sin 2 x
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\cos x)-2 \frac{d}{d x}(\sin 2 x) \\
& \frac{d^{2} y}{d x^{2}}=-\sin x-2 \frac{d}{d x}(\sin 2 x)
\end{aligned}
$$

Let $m=\sin 2 x$
and, $t=2 x \rightarrow \frac{d t}{d x}=2$
$\Rightarrow \mathrm{m}=\sin \mathrm{t} \rightarrow \frac{\mathrm{dm}}{\mathrm{dt}}=\cos \mathrm{t}$
$\Rightarrow \frac{d}{d x}(\sin 2 x)=\frac{d m}{d x}=\frac{d m}{d t} \times \frac{d t}{d x}=\cos t \times 2=2 \cos 2 x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-\sin x-4 \cos 2 x$

Integration

INTEGRAL CALCULUS

Integration is reverse process of differentiation.

For example :
$\int x^{7} d x=$?
Let, $\int x^{7} d x=y$
$\frac{d y}{d x}=x^{7}$
Let, $y=a x^{8}$

$$
\begin{equation*}
\frac{d y}{d x}=8 a x^{7} \tag{2}
\end{equation*}
$$

Comparing (1) and (2)

$$
\begin{aligned}
& 1=8 a \Rightarrow a=\frac{1}{8} \\
\therefore & y=\frac{x^{8}}{8} \\
& \int x^{7} d x=\frac{x^{8}}{8} \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad \Leftarrow C^{\prime} \text { is constant }
\end{aligned}
$$

But why this constant

$$
y=x^{3}+C
$$

$$
\frac{d y}{d x}=3 x^{2}+0=3 x^{2}
$$

$$
\therefore \int 3 x^{2} d x=x^{3}+C
$$

Think that integration is reverse process of differentiation and you can easily predict the results given below.

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \\
& \int 1 d x=x+C \\
& \int a d x=a x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \cos x d x=+\sin x+C \\
& \int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+C \\
& \int \sec ^{2} x d x=\tan x+C \\
& \int \operatorname{cosec}^{2} x d x=-\cot x+C \\
& \int \frac{1}{x} d x=\ell n x+C \\
& \int e^{x} d x=e^{x}+C \\
& \int a^{x} d x=\frac{a^{x}}{\log _{e} a}+C \\
& \int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+C \\
& \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x)+C \\
& \int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\sec { }^{-1}(x)+C
\end{aligned}
$$

Rules:

- $\int a d x=a x+C$
- $\int(u+v) d x=\int u d x+\int v d x$

For example :

$$
\int\left(x^{2}+\sin x\right) d x=\int x^{2} d x+\int \sin x d x=\frac{x^{3}}{3}-\cos x+C
$$

- $\int a \cdot f(x) d x=a \int f(x) d x$

For example :
$\int 3 x^{3} d x=3 \int x^{3} d x=3 \frac{x^{4}}{4}+C=\frac{3}{4} x^{4}+C$

Substitution Method

Q. Find the integration,

$$
I=\int \sin ^{3} \theta \cdot \cos \theta d \theta
$$

Sol. Put $u=\sin \theta \Rightarrow \frac{d u}{d \theta}=\cos \theta \Rightarrow d u=\cos \theta d \theta$

$$
\begin{aligned}
& I=\int u^{3} d u=\frac{u^{4}}{4}+C \\
& I=\frac{\sin ^{4} \theta}{4}+C
\end{aligned}
$$

Find the integration

$$
I=\int \frac{\tan ^{5} \theta}{\cos ^{2} \theta} d \theta
$$

$$
\text { Sol. } \begin{aligned}
& u=\tan \theta \\
& \frac{d u}{d \theta}=\sec ^{2} \theta \Rightarrow d u=\sec ^{2} \theta d \theta \\
& I=\int \tan ^{5} \theta \cdot \sec ^{2} \theta d \theta \\
&=\int u^{5} \cdot d u=\frac{u^{6}}{6}+C \\
& \text { I }=\frac{\tan ^{6} \theta}{6}+C
\end{aligned}
$$

Rule :

- $\int \frac{d u}{u}=\ell n u+C$
$I=\int \frac{1}{\sin \theta} \times \cos \theta d \theta$, find I.

Sol.

$$
\begin{gathered}
\\
u=\sin \theta \Rightarrow d u=\cos \theta d \theta \\
\\
I=\int \frac{1}{u} \cdot d u=\ln u+C \\
\\
I=\ln \sin \theta+C \\
\therefore \quad \int \cot \theta d \theta=\ln \sin \theta+C
\end{gathered}
$$

Find the integral

$$
I=\int \frac{d x}{5-2 x}
$$

Sol. Put, $t=5-2 x$, so that,

$$
\begin{aligned}
\Rightarrow \frac{d t}{d x} & =-2 \Rightarrow \frac{d t}{-2}=d x \\
I & =\frac{-1}{2} \int \frac{d t}{t}=-\frac{1}{2} \ln t+C \\
I & =-\frac{1}{2} \ln (5-2 x)
\end{aligned}
$$

Evaluate the integral

$$
I=\int \frac{\sqrt{x}}{1+x \sqrt{x}} d x
$$

Sol. Put, $t=1+x \sqrt{x}=1+x^{3 / 2}$
So that, $\frac{\mathrm{dt}}{\mathrm{dx}}=0+\frac{3}{2} x^{\frac{3}{2}-1}=\frac{3}{2} \sqrt{x} \Rightarrow \frac{2}{3} d t=\sqrt{x} d x$

$$
\begin{aligned}
& I=\frac{2}{3} \int \frac{d t}{t}=\frac{2}{3} \ln t+C \\
& I=\frac{2}{3} \ln (1+x \sqrt{x})+C
\end{aligned}
$$

Q. Evaluate the integral

$$
I=\int \cos ^{3} \theta \sin \theta d \theta
$$

Sol. $\mathrm{t}=\cos \theta \Rightarrow \frac{\mathrm{dt}}{\mathrm{d} \theta}=-\sin \theta \Rightarrow \mathrm{dt}=-\sin \theta \mathrm{d} \theta$
$\mathrm{I}=\int \mathrm{t}^{3}(-\mathrm{dt})=-\frac{\mathrm{t}^{4}}{4}+\mathrm{C}$
$\mathrm{I}=\frac{\cos ^{4} \theta}{4}+\mathrm{C}$

Find integration

$$
\mathrm{I}=\int \frac{\mathrm{e}^{t} d t}{\sqrt{1-\mathrm{e}^{t}}}
$$

Sol. Put $x=1-e^{t}$, so that

$$
\begin{aligned}
& \frac{d x}{d t}=0-e^{t} \Rightarrow d x=-e^{t} d t \\
& I=-\int \frac{d x}{\sqrt{x}}=-\int x^{-1 / 2} d x \\
& I=-\left(\frac{x^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}\right)+C \\
& I=-2 x^{1 / 2}+C=-2 \sqrt{x}+C=-2 \sqrt{1-e^{t}}+C
\end{aligned}
$$

Definite Integration :

In definite integration, we use limits of integration and get a constant value for the constant of integration (c). For the function, $y=x^{3}$,
$\int_{x=1}^{x=2} y d x=\int_{1}^{2} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{1}^{2}=\left[\left(\frac{2^{4}}{4}\right)-\left(\frac{1^{4}}{4}\right)\right]=4-\frac{1}{4}=\frac{15}{4}$

Evaluate the integral,

$$
I=\int_{1}^{2}(2 y+1)^{7} d y
$$

Sol. Put $t=2 y+1$
So that, $\frac{d t}{d y}=2+0=2 \Rightarrow d y=\frac{d t}{2}$
So, $I=\int t^{7} \frac{d t}{2}=\frac{1}{2} \int t^{7} d t=\frac{1}{2}\left[\frac{t^{8}}{8}\right]=\frac{1}{2} \cdot \frac{1}{8}\left[t^{8}\right]$
$I=\frac{1}{16}\left[(2 y+1)^{8}\right]_{1}^{2}$
$\mathrm{I}=\frac{1}{16}\left[\left(5^{8}\right)-\left(3^{8}\right)\right]=\frac{5^{8}-3^{8}}{16}=24004$

Area Under the Curve : (Geometrical Meaning of Integration)

$$
\begin{aligned}
y & =x^{2} \\
I & =\int_{1}^{3} y d x=\int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\frac{1}{3}\left[\left(3^{3}\right)-\left(1^{3}\right)\right] \\
I & =\frac{1}{3}(26)=\frac{26}{3} \\
I & =\int_{1}^{3} y d x \\
& =\text { Area under } y \text { vs } x \text { curve from } x=1 \text { to } x=3
\end{aligned}
$$

Find area under $y=x^{3}+3$, with x-axis from $x=1$ to $x=3$.

Sol. Area $=\int_{1}^{3} y d x=\int_{1}^{3}\left(x^{3}+3\right) d x=\left[\frac{x^{4}}{4}\right]_{1}^{3}+3[x]_{1}^{3}=\left(\frac{3^{4}-1^{4}}{4}\right)+3(3-1)=26$ units

For $\mathbf{y}=\boldsymbol{\operatorname { s i n }} \theta$
Find area under y vs from $\theta=\mathbf{0}$ to $\theta=\pi$

Sol. Area $=\int_{0}^{\pi} y d \theta=\int_{0}^{\pi} \sin \theta d \theta$
$=-[\cos \theta]_{0}^{\pi}=-[\cos \pi-\cos 0]=-[(-1)-(1)]$
Area $=2$ unit

Average Value :

Average value of a function can be found using the relation,
$y_{\text {avg }}=\langle y\rangle=\frac{\int_{x_{1}}^{x_{2}} y d x}{\int_{x_{1}}^{x_{2}} d x}$

For $y=f(x)=x^{2}$
Find average value of y from $x=1$ to $x=3$

Sol. $\langle y\rangle=\frac{\int_{1}^{3} y d x}{\int_{1}^{3} d x}=\frac{\int_{1}^{3} x^{2} d x}{\int_{1}^{3} d x}=\frac{\left[\frac{x^{3}}{3}\right]_{1}^{3}}{[x]_{1}^{3}}=\frac{\frac{1}{3}[27-1]}{[3-1]}=\frac{26}{6} \Rightarrow\langle y\rangle=\frac{13}{2}$

For $\mathbf{y}=\mathbf{2} \boldsymbol{\operatorname { s i n }} \theta$
Find average of \mathbf{y} from $\theta=\mathbf{0}$ to $\mathbf{q}=\pi$.
Sol.
$\langle y\rangle=\frac{\int_{0}^{\pi} y d \theta}{\int_{0}^{\pi} d \theta}=\frac{\int_{0}^{\pi} 2 \sin \theta d \theta}{\int_{0}^{\pi} d \theta}=\frac{2[-\cos \theta]_{0}^{\pi}}{[\theta]_{0}^{\pi}}=\frac{2(2)}{[\pi-0]}=\frac{4}{\pi}$
$\langle y\rangle=\frac{4}{\pi}$

Vectors

Physical Quantities:

Definition : The quantities by means of which, we described the laws of physics are called physical quantities.
Example : Length, Mass, Time, Force
\rightarrow Physical quantities can be measured.
\rightarrow Emotions, Feelings, Thinking, Pain are not physical quantities, because they cannot be measured.

\rightarrow If someone asks about your mass and your answer is 60 kg , then person is satisfied because he got the complete answer.
\rightarrow If someone asks about location (position) of your school and you only tell the distance of school from your current location, then person will not be satisfied and he will ask about the direction also. Hence position is a vector quantity.
\rightarrow A block is kept on a platform and someone asks you to apply a force of 10 N on the block. You will ask the person that in which direction you have to apply the force.

\therefore Force is a vector quantity because to completely define a force, information of magnitude and direction, both are required.

Length of wooden plank is 15 cm and direction is not required to specify the length. Hence length is a scalar quantity.

- A Physical quantity is vector, if
\rightarrow It has magnitude
\rightarrow It has direction
\rightarrow It follows rules of vector addition.
- Current is a scalar quantity.
\rightarrow Current has magnitude as well as direction but it does not follow laws of vector addition.
- Vector changes on changing its direction. Value of addition of vectors also changes on changing direction.

For example: We apply two forces, each of magnitude 10 N in same direction as shown in figure.

Now, we apply two forces, each of magnitude 10 N but in opposite directions as shown in figure.

\rightarrow Result changes on changing the direction of vector.
\therefore Force is a vector quantity.

- Water is being filled in a bucket with the help of two pipes.
$3 \mathrm{~kg} / \mathrm{s} \& 4 \mathrm{~kg} / \mathrm{s}$ are mass flow rates of water in pipes. Bucket is filled at a rate $7 \mathrm{~kg} / \mathrm{s}$. [If it was like 3 lit/s and 4 lit/s then it is volume flow rate of water in pipe. Bucket will be filled at 7 lit/s.]

Here also, bucket is filled at $7 \mathrm{~kg} / \mathrm{s}$ rate.
\rightarrow No change in result in above cases on changing the direction of flow.
\therefore Mass flow rate and volume flow rate are scalar quantities.

Current :

As there is no change in result, hence current is a scalar quantity. Now, let's take a ball and pipe setup as shown below.

Case I: Ball is given a speed of $4 \mathrm{~m} / \mathrm{s}$ in x-direction.

Ball will come out of pipe after 1 s.

$$
t=\frac{4}{4}=1 \mathrm{sec}
$$

Case II: Ball is given a speed of $4 \mathrm{~m} / \mathrm{s}$ in x-direction and simultaneously pipe is given a speed of $3 \mathrm{~m} / \mathrm{s}$ in y-direction.

Ball will again come out of pipe after 1 s , but this time at a different location.
Ball travels 5 m in 1 s
\therefore Velocity of ball is $5 \mathrm{~m} / \mathrm{s}$
\rightarrow Here ball has been given two velocities, velocity of $4 \mathrm{~m} / \mathrm{s}$ in x-direction and velocity of $3 \mathrm{~m} / \mathrm{s}$ in y -direction.
\rightarrow Vector addition of two velocities $3 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ gives a velocity of $5 \mathrm{~m} / \mathrm{s}$ in this case.

Case III: Ball is given a velocity of $4 \mathrm{~m} / \mathrm{s}$ in x-direction and simultaneously pipe is also given a velocity of $3 \mathrm{~m} / \mathrm{s}$ in x-direction.

Ball again comes out of pipe after 1s. This time ball travels 7 m and velocity of ball is $7 \mathrm{~m} / \mathrm{s}$.
\rightarrow Here resultant of two velocities $3 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ is $7 \mathrm{~m} / \mathrm{s}$.
\rightarrow Result changes on changing the direction of velocity.
\therefore Velocity is a vector quantity.

VECTOR:

Definition: A physical quantity is said to be a vector is in addition of magnitude and unit, it
\rightarrow has specified direction.
\rightarrow Obeys the parallelogram law of vector addition.

$$
R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}
$$

\rightarrow And its addition is commutative i.e. $\vec{A}+\vec{B}=\vec{B}+\vec{A}$

Geometrical representation of vector

Length of arrow : Magnitude of vector quantity.
Direction of arrow head gives its direction.

For example, 3 Persons A, B and C are running on road as shown.

Length of arrow represents the magnitude of vector. Direction of arrow represents the direction of vector.

For example :
Two persons A and B are applying forces of 50 N and 100 N respectively on the block as shown.
$\vec{F}_{A}=$ Force applied by A on block.
$=$ Force applied by B on block.

Types of vector :

\rightarrow Zero vector
\rightarrow Parallel vector
\rightarrow Antiparallel vector
\rightarrow Equal vector
\rightarrow Opposite vector
\rightarrow Unit vector
\rightarrow Co-linear vector
\rightarrow Co-planar vector
Let's see these various types in the example below:
Four persons A, B, C and D are applying forces on a block as shown in diagram.

56.

Equal vectors: Vectors having same magnitude as well as same direction.
$\rightarrow \vec{F}_{A} \& \vec{F}_{B}$ are equal vectors.
Opposite vectors: Vectors having same magnitude but opposite direction.
$\rightarrow \vec{F}_{A} \& \vec{F}_{C}$ are opposite vectors.
$\rightarrow \vec{F}_{B} \& \vec{F}_{C}$ are opposite vectors.
Parallel vectors: Vector having same direction but different magnitudes.
$\rightarrow \vec{F}_{c} \& \vec{F}_{D}$ are parallel.
Antiparallel vectors: Vectors having different magnitude but they are in opposite directions.
$\rightarrow \vec{F}_{A} \& \vec{F}_{D}$ are antiparallel.
$\rightarrow \vec{F}_{B} \& \vec{F}_{D}$ are antiparallel.

Collinear vectors: Vectors along same line.
$\rightarrow \vec{F}_{A} \& \vec{F}_{B}$ are collinear vectors.

Co-planar vectors: Vectors on same plane. $\rightarrow \vec{A}, \vec{B}, \vec{C}, \& \vec{D}$ are co-planar.

Unit Vector :

\rightarrow A vector with magnitude of unity is called unit vector.
\rightarrow Unit vector in direction of \vec{a} is, $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$

Let's have an example to undersatand unit vector.
Two persons $A \& B$ are running along direction ' P ' with velocities $10 \mathrm{~m} / \mathrm{s}$ and $6 \mathrm{~m} / \mathrm{s}$ respectively.
$\rightarrow \mathrm{V}_{\mathrm{A}}=10 \mathrm{~m} / \mathrm{s}$ along P-direction
$\rightarrow V_{B}=6 \mathrm{~m} /$ s along p-direction.

Viewing from the Top

$$
\begin{aligned}
& \hat{V}_{P}=\frac{\vec{V}_{A}}{\left|\vec{V}_{A}\right|}=\text { unit vector in p-direction } \\
& \vec{V}_{B}=6 \cdot \hat{V}_{P}=6 \cdot \frac{\vec{V}_{A}}{\left|\vec{V}_{A}\right|}=\frac{6}{10} \vec{V}_{A} \\
& \vec{V}_{B}=0.6 \vec{V}_{A}
\end{aligned}
$$

\rightarrow If you want to find a unit vector in any direction then
(a) take a vector in that direction.
(b) Divide the vector by its magnitude.
(c) We are left with only direction.

Addition of Vectors :

- Angle between two vectors

\rightarrow We can shift a vector parallel to itself.
\rightarrow To find the angle between two vectors we have to place them tail to tail.

Laws of vector addition :

1) Triangle Law
2) Parallelogram law

Triangle law :

Given that angle between \vec{A} and \vec{B} is ' θ '. Find $\vec{A}+\vec{B}=\vec{C}$?

$$
\underset{1^{\text {st }}}{\vec{A}}+\underset{2^{n d}}{\vec{B}}=\vec{C}
$$

\rightarrow Draw the $1^{\text {st }}$ vector as it is.
\rightarrow Shift the $2^{\text {nd }}$ vector as it is and keep the tail of $2^{\text {nd }}$ vector on the head of $1^{\text {st }}$ vector.
\rightarrow Join the tail of $1^{\text {st }}$ vector with head of $2^{\text {nd }}$ vector and it will give ' $\vec{A}+\vec{B}$ '

Find $\vec{A}+\vec{B}$

Sol.

Angle between \vec{A} \& \vec{B} is ' θ ' and $|\vec{A}|=a,|\vec{B}|=b$. Find $\vec{A}+\vec{B}$?

Sol. $\frac{x}{b}=\cos \theta \Rightarrow x=b \cos \theta$
$\frac{y}{b}=\sin \theta \Rightarrow y=b \sin \theta$
$(a+b \cos \theta)^{2}+(b \sin \theta)^{2}=c^{2}$

$$
\begin{aligned}
\Rightarrow & a^{2}+b^{2} \cos ^{2} \theta+2 a b \cos \theta+b^{2} \sin ^{2} \theta=c^{2} \\
\Rightarrow & a^{2}+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+2 a b \cos \theta=c^{2} \\
\Rightarrow & c^{2}=a^{2}+b^{2}+2 a b \cos \theta \\
& c=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}
\end{aligned}
$$

Angle of \vec{B} with \vec{A} is ' θ '
Angle of \vec{C} with \vec{A} is ' λ '

$$
\tan \lambda=\frac{\mathrm{b} \sin \theta}{\mathrm{a}+\mathrm{b} \cos \theta}
$$

Angle between two vectors \vec{A} and \vec{B} is 60°. $|\vec{A}|=5,|\vec{B}|=10$. Then find

Sol. $|\vec{A}+\vec{B}|$
$|\vec{A}|=a=5,|\vec{B}|=b=10, \theta=60^{\circ}$
$c=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}=\sqrt{5^{2}+10^{2}+2 \cdot 5 \cdot 10 \cdot \cos 60^{\circ}}$
$c=\sqrt{25+100+100 \times \frac{1}{2}}=\sqrt{175}$
$|\vec{A}+\vec{B}|=c=\sqrt{175}$
Angle between \vec{A} \& \vec{C}
$\tan \lambda=\frac{b \sin \theta}{a+b \cos \theta}=\frac{10 \times \frac{\sqrt{3}}{2}}{5+10 \times \frac{1}{2}}=\frac{10 \frac{\sqrt{3}}{2}}{5+5}=\frac{\sqrt{3}}{2}$
$\tan \lambda=\frac{\sqrt{3}}{2}$
$\lambda=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Q. $|\vec{A}|=4,|\vec{B}|=3$ and $|\vec{A}+\vec{B}|=5$. Find angle between \vec{A} and \vec{B}.

Sol. $|\vec{A}+\vec{B}|=c=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$
$\mathrm{C}^{2}=5^{2}=4^{2}+3^{2}+2 \times 4 \times 3 \times \cos \theta$
$\Rightarrow \quad 25+24 \cos \theta=25 \Rightarrow 24 \cos \theta=25-25=0$
$\Rightarrow \cos \theta=0 \Rightarrow \theta=90^{\circ}$
Q. Angle between \vec{A} and \vec{B} is $120^{\circ},|\vec{A}|=a$ and $|\vec{B}|=a$. Find $|\vec{A}+\vec{B}|$ and angle between $\overrightarrow{\mathbf{C}}$ \& $\overrightarrow{\mathrm{A}}$.

Sol.

$$
\begin{aligned}
& \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \cos \theta} \\
& \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}+2 \mathrm{a} \cdot \mathrm{a} \cos 120^{\circ}} \\
& \cos 120^{\circ}=-\frac{1}{2} \\
& \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}+2 \cdot \mathrm{a} \cdot \mathrm{a} \times\left(-\frac{1}{2}\right)} \\
& \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{a}^{2}-\mathrm{a}^{2}} \Rightarrow \mathrm{c}=\mathrm{a} \\
& \tan \lambda=\frac{\mathrm{a} \sin 120^{\circ}}{\mathrm{a}+\operatorname{acos} 120^{\circ}} \Rightarrow \tan \lambda=\sqrt{3} \Rightarrow \lambda=60^{\circ}
\end{aligned}
$$

Parallelogram law :

Angle between \vec{A} and \vec{B} is ' θ '.
Find, $\vec{A}+\vec{B}=\vec{C}$
As per parallelogram law,

$c=\sqrt{a^{2}+b^{2}+2 a b \cos \theta} \& \tan \lambda=\frac{b \sin \theta}{a+b \cos \theta}$
Q. $|\vec{A}|=\mathbf{a},|\overrightarrow{\mathbf{B}}|=\mathbf{a}$, Angle between $\overrightarrow{\mathbf{A}} \& \overrightarrow{\mathbf{B}}, \theta=12 \mathbf{0}^{\circ}$. Find $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{C}}$

Sol. $|\vec{C}|=$ a (diagonal of the parallelogram)
Angle of \vec{C} with \vec{A} is 60°.

Subtraction of vectors: Subtraction is also a type of addition. \vec{A}, \vec{B} are given. Angle between $\vec{A} \& \vec{B}$ is ' θ ' .

Find $\vec{A}-\vec{B}=\vec{D}$

$|\vec{D}|=\sqrt{a^{2}+b^{2}+2 a b \cos \left(180^{\circ}-\theta\right)}$

$$
d=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}
$$

Polygon law :

$$
\vec{A}+\vec{B}+\vec{C}+\vec{D}=\vec{E}
$$

Multiplication of a vector by a scalar (number) :

If ' n ' is positive

- magnitude becomes ' n ' times
- direction remains same

If ' n ' is negative

- magnitude becomes |n| times

- direction becomes opposite

Components: Resolution of a Vector :

$\frac{B}{H}=\frac{A_{n}}{A} \Rightarrow A_{n}=A \cdot\left(\frac{B}{H}\right)$
$\Rightarrow \quad A_{n}=A \cos \theta$
' \vec{A}_{n} ' is component of ' \vec{A}^{\prime} ' in ' \hat{n} ' direction.
$\mathrm{OS}=\mathrm{A}_{\mathrm{e}}=\mathrm{A} \cos \beta$
' \vec{A}_{e} ' is component of ' \vec{A}^{\prime} ' in \hat{e} direction

- Meaning of component is effect.

For example,
A person moves by 10 m in 'â' direction as shown.

$$
A_{x}=A \cos \theta
$$

$\vec{A}_{x}=A \cos \theta \hat{i}$
$O C=A_{y}=A \cos \left(90^{\circ}-\theta\right)=A \sin \theta$
$\vec{A}_{y}=A \sin \theta \hat{j}$

- A vector can have many components.

Component of a vector at 90° is "zero".

$$
A_{90^{\circ}}=A \cos 90^{\circ}=0
$$

If a person moves in y-direction then its x co-ordinate will not change.

Rectangular Components :

Any set of two components at 90° with each other are called rectangular components.

$$
\begin{aligned}
V_{x} & =V \cos \theta \\
V_{y} & =V \cos \left(90^{\circ}-\theta\right)=V \sin \theta \\
\Rightarrow \vec{V}_{x} & =V \cos \theta \hat{i} \\
\vec{V}_{y} & =V \sin \theta \hat{j}
\end{aligned}
$$

- When rectangular components are added, we get original vector.

$$
\begin{aligned}
& \vec{V}=\vec{v}_{x}+\vec{V}_{y} \\
& \vec{V}=V \cos \theta \hat{i}+V \sin \theta \hat{j}
\end{aligned}
$$

- For $\alpha+\beta \neq 90^{\circ} \Rightarrow \vec{V}_{e}+\vec{V}_{n} \neq \vec{V}$

\rightarrow "A vector can have many sets of rectangular components."

Coordinate System :

Right handed coordinate system : $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes are selected by "Right Hand Rule".

- Put your hand along x-axis
- Curl your four fingers towards y-axis
- Thumb gives direction of z-axis

3-Rectangular Components :

$$
\begin{aligned}
& V_{x}=V \cos \alpha \\
& V_{y}=V \cos \beta \\
& V_{z}=V \cos \gamma \\
& O S=\sqrt{V_{x}^{2}+V_{z}^{2}} \\
& O P=\sqrt{O S^{2}+S P^{2}} \\
& S P=V_{y} \\
& O P=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}} \\
& V=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}} \\
& \vec{V}=V \cos \alpha \hat{i}+V \cos \beta \hat{j}+V \cos \gamma \hat{k}
\end{aligned}
$$

Now,

$$
V=\sqrt{(V \cos \alpha)^{2}+(V \cos \beta)^{2}+(V \cos \gamma)^{2}}
$$

$$
\Rightarrow \mathrm{V}^{2}=\mathrm{V}^{2}\left[\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right]
$$

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

Q. $\overrightarrow{\mathbf{v}}$ makes an angle 135° with x-axis write $\overrightarrow{\mathbf{v}}$ in terms of $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$

Sol. $\vec{V}=V \cos \theta \hat{i}+V \sin \theta \hat{j}$, Here, $\theta=135^{\circ}$

$$
\begin{aligned}
& \vec{V}=V \cos \left(135^{\circ}\right)+V \sin \left(135^{\circ}\right) \\
& =V\left(-\frac{1}{\sqrt{2}}\right) \hat{i}+V\left(\frac{1}{\sqrt{2}}\right) \hat{j} \\
& \vec{V}=-\frac{V}{\sqrt{2}} \hat{i}+\frac{V}{\sqrt{2}} \hat{j}
\end{aligned}
$$

$\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, draw $\overrightarrow{\mathbf{A}}$. Also find magnitude of $\overrightarrow{\mathbf{A}} \mathbf{i} . \mathrm{e} .|\overrightarrow{\mathbf{A}}|$

$$
\text { Sol. } \begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& A_{x}=2, A_{y}=3, A_{z}=1 \\
&|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
&=\sqrt{2^{2}+3^{2}+1^{2}} \\
&|\vec{A}|=\sqrt{14}
\end{aligned}
$$

Product of Vectors:

1) Vector Product (Cross Product) \Rightarrow Result is a vector.
2) Scalar Product (Dot Product) \Rightarrow Result is a scalar.

- Vector Product of \vec{A} and $\vec{B} \Rightarrow \vec{A} \times \vec{B}=\vec{C}$ (vector)
- Scalar Product of \vec{A} and $\vec{B} \Rightarrow \vec{A} \cdot \vec{B}=D$ (scalar)
$\vec{A} \times \vec{B}=(a b \sin \theta) \hat{e}$
$\vec{A} \cdot \vec{B}=a b \cos \theta$
Where $|\vec{A}|=\mathrm{a}$ and $|\vec{B}|=\mathrm{b}$
and ' θ ' is angle between \vec{A} and \vec{B}

Cross Product :

$\vec{A} \times \vec{B}=\vec{C}$

- $\quad \vec{C}$ is perpendicular to \vec{A} and \vec{B}. both
- $\quad \vec{C}$ is perpendicular to plane formed by \vec{A} and \vec{B}.
- Direction of $\overrightarrow{\mathrm{C}}$ is given by right hand thumb rule.
$\vec{A} \times \vec{B}=\vec{C}$

To find direction of \vec{C}

Place your stretched right palm perpendicular to the plane of \vec{A} and \vec{B} in such a way that the fingers are along \vec{A} and when the fingers are closed, they go towards \vec{B}. Then, direction of thumb gives the direction of \vec{C}.

OR $\vec{A} \times \vec{B}=\vec{C}=A B \sin \theta \hat{n}$

- Direction of \hat{n} is found out by same method.

Q. If $\overrightarrow{\mathbf{A}}=\mathbf{5} \hat{\mathbf{m}}$ and $\overrightarrow{\mathbf{B}}=\mathbf{6} \hat{\mathbf{n}}$. Angle between $\hat{\mathbf{m}}$ and $\hat{\mathbf{n}}$ is 37°. Find $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{C}}$.

Sol.

$\vec{A} \times \vec{B}=\vec{C}=A B \sin \theta \hat{e}$

$$
\begin{aligned}
& =5 \times 6 \times \sin 37^{\circ} \hat{e} \\
& =5 \times 6 \times \frac{3}{5} \hat{e} \\
& \vec{C}=18 \hat{e}
\end{aligned}
$$

$\vec{A} \times \vec{B}=\vec{C}=a b \sin \theta \hat{n}$
$\vec{B} \times \vec{A}=\vec{D}=$ ba $\sin \theta(-\hat{n})$
$\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$ have same magnitude, but opposite direction.
$|\vec{A} \times \vec{B}|=|\vec{B} \times \vec{A}|=a b \sin \theta$, but
$(\vec{A} \times \vec{B})=-(\vec{B} \times \vec{A})$

$|\vec{A} \times \vec{B}|=\mathrm{ab} \sin \theta=$ Base \times Height $=$ Area of Parallelogram

Dot Product :

$\vec{A} \cdot \vec{B}=\mathrm{ab} \cos \theta$
$\vec{A} \cdot \vec{B}=a(b \cos \theta)$
$=a \times$ length of projection of \vec{B} on \vec{A}
$=a \times$ component of \vec{B} along \vec{A}
$\vec{A} \cdot \vec{B}=(a \cos \theta) b$

$$
=\text { length of projection of } \vec{A} \text { on } \vec{B} \times b
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=\mathbf{a}_{1} \hat{\mathbf{i}}+\mathbf{a}_{2} \hat{\mathbf{j}}+\mathbf{a}_{3} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{B}}=\mathbf{b}_{1} \hat{\mathbf{i}}+\mathbf{b}_{2} \hat{\mathbf{j}}+\mathbf{b}_{3} \hat{\mathbf{k}}
\end{aligned}
$$

Find: 1) $\vec{A} \times \vec{B}=\vec{C} \quad$ 2) $\vec{A} \times \vec{B}=d$

Sol.

$$
\text { 1) } \begin{aligned}
&|\vec{A} \times \vec{B}|=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
&=\hat{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\hat{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{aligned}
$$

$$
=\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}
$$

$$
\text { If } \quad \vec{A}=2 \hat{i}+3 \hat{j}-2 \hat{k}
$$

$$
\vec{B}=2 \hat{i}+4 \hat{j}+1 \hat{k}
$$

$$
\begin{aligned}
& \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & -2 \\
2 & 4 & 1
\end{array}\right| \\
& =[3 \times 1-4 \times(-2)] \hat{i}-[2 \times 1-2 \times(-2)] \hat{j}+[2 \times 4-2 \times 3] \hat{k} \\
& =11 \hat{i}-6 \hat{j}+2 \hat{k}
\end{aligned}
$$

2) $\vec{A} \cdot \vec{B}=d=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

If $\vec{A}=2 \hat{i}+3 \hat{j}-2 \hat{k}$
$\vec{B}=2 \hat{i}+4 \hat{j}+\hat{k}$
$\vec{A} \cdot \vec{B}=2 \times 2+3 \times 4+(-2) \times 1=4+12-2=14$

- Angle between \vec{A} and \vec{B}

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=a b \cos \theta \\
& \cos \theta=\frac{\vec{A} \cdot \vec{B}}{a b} \\
& a=|\vec{A}| \text { and } b=|\vec{B}| \\
& \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}, \text { where ' } \theta \text { ' is angle between } \vec{A} \text { and } \vec{B} \\
& |\vec{A}|=\sqrt{2^{2}+3^{2}+(-2)^{2}}=\sqrt{17} \\
& |\vec{B}|=\sqrt{2^{2}+4^{2}+1^{2}}=\sqrt{21} \\
& \cos \theta=\frac{14}{\sqrt{17} \sqrt{21}} .
\end{aligned}
$$

- When two vectors are perpendicular $\left(\theta=90^{\circ}\right)$, their dot product is zero.

$$
\vec{A} \cdot \vec{B}=A B \cos 90^{\circ}=0
$$

\qquad

\qquad

