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Kinematics of Circular Motion 

Motion on a circular path is circular motion. Even a motion on a curved path can be 
considered a combination of several circular motions.
Also, a straight-line motion can be considered as a circular motion of infinite radius.

      

R3R1

R2

Parameters of Circular Motion

a)	 Angular displacement: Angular displacement is 
the angle turned by a particle moving on a circular 
path in a certain time.

	 It is a vector quantity and direction of angular 
displacement is found by using Right Hand thumb 
rule.

	 Rotate the curl of fingers of right hand in direction 
of rotation on circular path, then the direction of 
thumb of right hand gives the direction of angular 
displacement vector.

	 So, angular displacement θ


 is an axial vector.

b)	 Angular velocity 


(ω)  : The rate with which angular displacement changes with respect 

to time is called angular velocity.
	 It is also an axial vector and its direction is same as that of angular displacement vector.

Relation between linear velocity (v) and angular velocity (ω) 

We know that,

Angle θ =
Arc length (AB)

( )
Radius (R)

So, D = Rθ
Divide both sides by ∆t,

θ
= ⋅

∆ ∆
D

R
t t

θ

B

θ
A

B

AR

R
ω

θ
v

v
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Now, θ
= = ω

∆ ∆
D

v and
t t

So, = ωv R

In vector form, = ω ×


 

v ( R)

For straight line motion:
To find angular velocity about point P, use the 
following formula,

ρ

⊥

ω =

component of velocity er to the line joining
the particle and point P

Length of the line joining

θ
ω =P

v cos
L

v cosθ

v sinθ

A v

L

P

θ

ω

θ

A man is standing 3m from a wall and he lights up a torch on the wall. If he 
is rotating the torch at an angular speed of 0.1 rad/s, then what is the veloc-
ity of spot of light when light ray makes an angle of 45° with the line joining 
the man and wall.

ω

45°

3m

Let v be the light spot’s speed as shown.
From figure, 

° =
3

cos45
L

  ⇒ =
1 3

L2
  =L 3 2

Now, °
ω =

v cos45
L

⇒ = ×
×

1
0.1 v

2 3 2

⇒ = ×v 0.1 6 		 =v 0.6 m/s

ω = 0.1 rad/s

45°

3m

L

v

v cos 45°

v sin 45°

Q.

Sol.
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c)	 Angular acceleration (α):
The rate with which angular velocity changes w.r.t time is called angular acceleration.

ω θ
α = =

2

2

d d
dt dt

If ω is increasing, then α


 and ω


 are in same direction.
If ω is decreasing, then α



 and ω


 are in opposite direction.

(Angular velocity is increasing)

ω
α

P

αω
v

  (Angular velocity is decreasing)

ω

α

Pα

ω
v

Equations of motion for constant angular acceleration:

Just like we have 3 equations of motion for constant acceleration in linear motion, we have 
3 equations of motion in circular motion also when angular acceleration is constant.

v = u + at	 →	 ω = ω0 + αt

s = ut + 1
2

at2	 →	 θ = ω0t + 1
2
αt2

v2 = u2 + 2as	 →	 ω2 = ω2
0  + 2αθ

A disc has initial angular speed w0 = 10p rad/s. It has angular acceleration of 
–2p rad/s2. How many turns are rotated by the disc in 8s?

Q.
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Calculus form of equation of motion:

θ
ω = =

d dx
, v

dt dt

ω
α = =

d dv
, a

dt dt

ω
α = ω ⋅ = ⋅

θ
d dv

, a v
d dx

For ω0 = 10π rad/s,	 α = –2π rad/s2,

ω becomes zero at t = 5s as 0 = 10π – 2πt =t 5s

So, direction of rotation reverses at t = 5s.

For 0 < t < 5s,

θ = ω + − π 2
1 0

1
(5) ( 2 )5

2

= π − π = π − π = π10 (5) 25 50 25 25

θ π
= = =

π π
1

1

25
n 12.5

2 2

For 5 < t < 8s,

θ = π − = π2
2

1
(2 )(8 5) 9

2

π
= =

π2

9
n 4.5

2

Total no. of rotations = 12.5 + 4.5 = 17

Sol.
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A particle moves with constant speed in a circular path. What is the ratio of 
average velocity to its instantaneous velocity when the particle describes an 

angle 
2
π

θ = .

A particle is moving with constant speed in a circle as shown. Find the an-
gular velocity of the particle A with respect to fixed point B and C if angular 
velocity with respect to O is ω.

Time taken to describe angle R R
, t

v 2v
θ θ π

θ = = =
ω

avg
Total displacement 2R 2 2

v v
Total time R / 2v

= = =
π π

Instantaneous velocity = v

Required ratio of average velocity to its instantaneous velocity is, avg

ins

v 2 2
v

=
π

A particle is moves with constant speed in a circle as shown in the figure. 
What is the angular velocity of the particle A wrt fixed point B and C if angular 
velocity wrt point O is w.

	
AO

AO
AO

(v ) v
r r

⊥ω = = = ω

Similarly, we have

	
AB

AB
AB

(v ) v
r 2r 2

⊥ ω
ω = = =

and AC
AC

AC

(v ) v
r 3r 3

⊥ ω
ω = = =

Q.

Q.

Sol.

Sol.
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Two particles A and B move with constant and equal speeds in a circle as 
shown in the figure. What is the angular velocity of the particle A wrt B, if 
angular velocity of particle A w.r.t. O is ω.

Two particles A and B move on a circle. Initially, the particles A and B are 
diagonally opposite to each other. Particle A moves with angular velocity 
π rads–1, angular acceleration  and particle B moves with constant angular 
velocity 2π rads–1. Find the time after which both the particles A and B will 
collide.

Angular velocity of A with respect O is

	
AO

AO
AO

(v ) v
r r

⊥ω = = = ω

Now,	 AB
AB

AB

(v )
r

⊥ω =

⇒	 vAB = 2v

Since vAB is perpendicular to rAB

⇒	 (vAB)⊥ = vAB = 2v
	 rAB = 2r

AB
AB

AB

(v ) 2v
r 2r

⊥⇒ ω = = = ω

Suppose angle between OA and OB is θ, then the rate of change of θ is called 
angular velocity.

Q.

Q.

Sol.

Sol.
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A fan rotating with ω = 100 rads–1, is switched off. After 2n rotation, its angu-
lar velocity becomes 50 rads–1. Calculate the angular velocity of the fan after 
n rotations.

2 2
0 2ω = ω + αθ

2 250 (100) 2 (2 2n)⇒ = + α π 					     …(1)

If angular velocity after n rotation is ωn, then 

2 2
n (100) 2 (2 n)ω = + α π 						     …(2)

From equation (1) and (2), we get 

2 2

2 2
n

50 100 2 (2 2n)
2

100 2 2 n
− α π

= =
ω − α π

2 2
2
n

50 100
2
+

⇒ ω =

125 10 rads−⇒ ω =

Q.

Sol.

With respect to the point A, we have 

	
1

BA B A 2r rads−ω = ω = ω − ω = − π = π

	
2

BA B A rads
2

−π
α = α = α − α = −

If angular displacement is ∆θ, then by equation of motion,

	
21

t t
2

∆θ = ω + α

For collision between A and B, angular displacement is given by

	 ∆θ = π

21
t t

2 2
−π ⇒ π = π +  

 

⇒	 t2 – 4t + 4 = 0

⇒	 t = 2sec
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A particle is thrown with speed u at an angle q above horizontal. Find radius 
of curvature at highest point of trajectory. Also, find radius of curvature at 
point of projection.

Speed at highest point is u cos θ

So, θ θ
= =

2 2 2(ucos ) u cos
R

g g

At the point of projection A, =
θ

2

A

u
R

gcos

If equation of path is given in terms of x and y, then,
Radius of curvature at any point can be found using following formula,

  
 +     =

3
2 2

2

2

dy1
dx

R
d y
dx

R
g

u cosθ

u

θ

g

g sinθ

A

u

g cosθ

RA

θ

θ

Q.

Sol.

Radius of Curvature
To find radius curvature at any point on a curved path, we can use the formula,

=
⊥

2

c

(Speed)
R

Component of acceleration er to velocity

The radius of cuvature of a curve at a particular point is defined as the radius of the 
approximately circle at that point.

If angular displacement of a particle is given by θ = a – bt + ct2, then find its 
angular velocity and angular acceleration.

Angular velocity, ( ) 1d
b 2ct rads

dt
−θ

ω = = − +

Angular acceleration, ( ) 2d
2c rads

dt
−ω

α = =

Q.

Sol.
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A ball is projected horizontally from top of a vertical tower of height 20m 
with speed 20 m/s. Find the radius of curvature at the point of landing

u = 20 m/s
h
 =

 2
0m

Q.

= = × × =yv 2gh 2 10 20 20 m/s

u = 20 m/s

= + = + =2 2 2 2
yv u v 20 20 20 2 m/s

θ = = =
u 20

tan 1
v 20

   ⇒ θ = °45

So, radius of curvature at landing point, 

= = = =
θ × ° ×

2 2

c

v (20 2) 800
R 80 2m

1g sin 10 sin45 10
2

g cosθ

g

θ

v
vy

g sinθ

Rc

u = 20 m/s

h

u

Sol.

A particle is moving with velocity and acceleration as shown. What will be 
the minimum value of radius of curvature?

120°

a = 2

v = 8m/s

Q.
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Acceleration in Circular Motion
For any body moving on a curved path, net acceleration of the body has two components.

So, = +
  

net R Ta a a

We know that, = ω ×


 

v R

Differentiating both sides w.r.t t,

ω
= ω × + ×



 



dv dR d
R

dt dt dt

   ω
= ω × + ×     







 

net

dR d
a R

dt dt

v + dv

R’

R

v

α

ω ω

ω ω+d

Rmin

a

8 cos30°

30°

v = 8m/s

a = 2

Radius of curvature will be minimum at the point where speed is minimum.

2
min

min

v
R =

a

     ° 2(8cos30 )
=

2

      = 24 m

Sol.
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Let’s consider a particle is speeding up on a circular path as shown.
Then,

ω
= α



d
dt

As α


 is outwards the plane of paper and 


R  is away from centre,
then, α ×





R  will be tangential.
So, tangential acceleration, = α ×



 

Ta ( R)

or	 = αTa R

Now, the magnitude of 


R  is constant but its 
direction is changing with the motion of particle on 
circular path,
So, 



R  is a not a constant vector.

So,	
−

= = =

 




 2 1R Rs dR
v

t t dt

∴	 Radial acceleration,  = ω ×
  

Ra v

Now, ω ×
 

( v)  will be towards the centre.

Thus, radial acceleration is always towards the centre.

 
= ω = = = ω  

2
2

R

v v
a v v R

R R

For uniform circular motion,
v = constant

So, = ⇒ = α =T

dv
0 a R 0

dt

≠ca 0

For non-uniform circular motion,

 = +2 2
net c Ta a a

 θ = T

c

a
tan

a

R –R = s2 1

R1
O

R2

2

C
va =
R

θ

v

anet a =RT α
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	y When particle is speeding up, 


v  and 


Ta  are in same direction. Angle between 


v  and 


neta  is 

acute.
	y When particle is slowing down, 



v  and 


Ta  are in opposite direction. Angle between 


v  and 


neta  is obtuse. 

A body moves on a circular path of radius 20 cm at a speed that uniformly 
increases. If the speed changes from 5 ms–1 to 6 ms–1 in 2 s, find the angular 
acceleration. 

What is the magnitude of the acceleration of a particle which is moving on a 
circular path of radius 10 cm with uniform speed completing the circle in 4s.

As the speed is increasing uniformly, then the average tangential acceleration 
is equal to instantaneous tangential acceleration.
The instantaneous tangential acceleration is given by 

	 2 1
T

2 1

v vdv
a

dt t t
−

= =
−

2 2
T

6 5
a ms 0.5ms

2
−−

⇒ = =

The angular acceleration, Ta
r

α = .

2 2
20.5ms 0.5ms

2.5rads
20cm 0.20m

− −
−⇒ α = = =

The distance covered in one full circle is 2πr = 2π × 10 cm.

The linear speed is 12 10cm2 r
v 5 cms

T 4s
−π ×π

= = = π

The acceleration is 
1 22

2 2
C

5( cms )v
a 2.5 cms

r 10cm

−
−π

= = = π

As the speed is uniform, so tangential acceleration is zero. Total acceleration 
is same as centripetal acceleration.

Q.

Q.

Sol.

Sol.
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A particle is moving in a circle of radius 2 m at a speed given by v = 4t, where 
v is in ms–1 and t is in seconds. 
(a) Calculate the tangential acceleration at t = 1 s.
(b) Find total acceleration at t = 1 s.

A particle is moving with a constant angular acceleration of 4 rads–2 on a 
circular path. Initially the particle was at rest. At what time, the magnitudes 
of centripetal acceleration and tangential acceleration are equal

Tangential acceleration 

T

dv
a

dt
=

2
T

d
a (4t) 4 ms

dt
−⇒ = =

2 2
2

C

v (4)
a 8ms

R 2
−⇒ = = =

Total acceleration, 2 2 2 2
T ca a a (4) (8)= + = +

2a 16 64 80 4 5 ms−⇒ = + = =

Tangential acceleration, at =  αR

By equation of motion, v = 0 + αRT

Centripetal acceleration, 
2 2 2 2

c

v R t
a

R R
α

= =

On equating both the accelerations, |at| = |ac|

2 2 2R t
R

R
α

⇒ α =

2 1 1
t

4
⇒ = =

α

1
t s

2
⇒ =

Q.

Q.

Sol.

Sol.
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For a particle moving on a circular path, its acceleration vector is making an 
angle of 30° with the velocity vector, then the ratio of centripetal accelera-
tion to its tangential acceleration is.

A body is moving is x—y plane as shown in a circular path of radius 2 m. At a 
certain instant when the body is crossing the positive y-axis its acceleration 
is 2ˆ ˆ(6i 8j)ms−− . Then its angular acceleration and angular velocity at this 
instant will be.

N

t

a
tan

a
θ =

oN

t

a 1
tan(30 )

a 3
⇒ = =

Since ˆ ˆa 6i 8j= −


⇒	 ac = 8 and aT = 6

⇒	 rω2 = 8 and rα = 6

18
2rads

2
−⇒ ω = =  and 26

3rads
2

−α = =

Since the body is rotating in clockwise since, so by using Right Hand Thumb 
Rule, we get

1ˆ2krads−ω = −
  and 2ˆ3krads−α = −

 .

Q.

Q.

Sol.

Sol.
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A solid body rotates with deceleration about a stationary axis with an angu-
lar deceleration | | kα = ω , where ω is its angular velocity and k is a positive 
constant. Calculate the average angular velocity of the body averaged over 
the whole time of rotation if at the initial time instant, its angular velocity 
was equal to ω0. 

| | kα = ω

d
k

dt
ω

⇒ − = ω

0

t

0

d
kdt

ω

ω

ω
⇒ = −

ω
∫ ∫

0

2 kt
ω

ω

 ⇒ ω = − 

0

kt
2

⇒ ω − ω =

2

0

kt
2

 
⇒ ω = ω − 

 

The body will stop when 0

kt
0

2
ω − =

02
t

k

ω
⇒ =

Now average angular velocity over this time interval is

	

0 0

0 0

2 2
2k k

0
0 0 0

2 2

k k

0 0

ktdt dt
2

3

dt dt

ω ω

ω ω

 
ω ω −  ω < ω > = = =

∫ ∫

∫ ∫

Q.

Sol.
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The speed (v) of a particle moving in a circle of radius R varies with distance 
s as v = ks, where k is a positive constant. Calculate the total acceleration of 
the particle.

A particle P moves along a circle of radius R so that its radius vector r


, rela-
tive to the point O at the circumference rotates with constant angular veloc-
ity ω. Find the magnitude of the velocity of the particle and the direction of 
its total acceleration.

Speed, v = ks
As the particle moves in a circle, so total acceleration, a is 

2 2
C Ta a a= +

Where 
2

C

v
a

R
=  and T

dv
a

dt
=

2 2

C

k s
a

R
⇒ =  and T

d ds
a (ks) k kv

dt dt
 

= = = 
 

2 2

C

k s
a

R
⇒ =  and 2

T

ds
a k(ks) k s v ks

dt
 

= = = = 
 


So, total acceleration, 
4 4 2

4 2 2
2 2

k s s
a k s k s 1

R R
= + = +

In triangle OPC, by Sine law,

	

r R
sin( 2 ) sin

=
π − θ θ

r R
2sin cos sin

⇒ =
θ θ θ

⇒	 r = 2R cos θ
Further we can see that,

ˆ ˆr (r cos )i (r sin ) j= θ + θ


2 ˆr (2Rcos )i (2Rsin cos )⇒ = θ + θ θ


Since dr
v

dt
=





Q.

Q.

Sol.

Sol.
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d dˆ ˆv 4Rcos sin i 2Rcos(2 ) j
dt dt

   θ θ
⇒ = − θ θ + θ   

   



	 Since 
d
dt
θ
= ω

	
( ) ( )ˆ ˆv 2R sin 2 i cos 2 j ⇒ = − ω − θ + θ 



		  | v | 2R⇒ = ω


	 Now, we know that dv
a

dt
=





		
2 ˆ ˆa 4R (cos(2 )i sub(2 ) j)⇒ = ω θ + θ



		
2| a | 4R⇒ = ω


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For motion on a circular path,
Net force towards the centre of circle, FC = m.aR

where aR = Radial acceleration
Radial acceleration is also known as centripetal acceleration as it is always directed towards 
the centre of the circular path.
The force FC is known as centripetal force.
A centripetal force must be present for motion to be circular.
Net force tangential to the circular path, FT = maT

where aT = Tangential acceleration
	y For uniform circular motion,

		  aT = 0
So,		 FT = 0

	y For non-uniform circular motion,
		  aT ≠ 0
So,		 FT ≠ 0
Consider a system as shown in figure below. If the string 2 is cut, find the tangential and 
centripetal acceleration of the ball just after cutting the string. If after cutting, the ball 
acquires a velocity v at the bottom-most point, find the value of centripetal and tangential 
acceleration.

m

2

θ

1 R

mg

θ

R

T2 T  sin1 θ

θ

T  cos1 θ
T1

For initial equilibrium,

T1 cosθ = mg  and, T1 sinθ = T2

Just after cutting the string 2, tension T2 disappears, and tension T1 becomes T’1.
At this instant, v = 0

So,  = θ1
'T mgcos

and, = θTma mgsin

∴	 aC = 0, 	  aT = g sinθ mg

θ
R

θ
T1

mg cosθ mg sinθ
θ

v = 0

’

Dynamics of Circular Motion
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Now, when the ball reaches its bottom-most point, it has acquired a velocity v.
At this point, T-mg = maC

There is no tangential force,
So, aT = 0

=
2

C

v
a

R
Then, tension in string at lowest point,

 
= +  

2mv
T mg

R

Free-Body Diagram in Circular Motion
Consider a bob of mass m is being rotated with angular 
velocity ω by attaching it to a string of length L.
For the circular motion, there should be an acceleration 
towards the centre,

ω
= = = = ω

2 2
2

c

v (L )
a a L

L L

Tension in string, = = = ω
2

2mv
T ma mL

L

mg

R

v

T

ω

TO
L

a

m

v

(Top view)

T

aR

L

O

v
m

Consider the given system of masses in uniform circular motion. Find ten-
sion in the strings.

m1 m2 m3

ω

r1

r2

r3

For mass m3,	 T3 = m3 (r3ω
2)

For mass m2,	 T2–T3 = m2r2 ω
2

			   T2 = ω2 [m2r2 + m3r3]

For mass m1, 	T1–T2 = m1r1 ω
2

			   T1 = ω2 [m1r1 + m2r2 + m3r3]

m1 m2 m3

ω

r1

r2

r3

T1 T2 T2 T3 T3

Q.

Sol.
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A straight rod of mass m and length L is rotated about its one end with con-
stant angular velocity w. Find tension at a point at distance r from the point 
of rotation

ω

r

P m,L

Tension at a point during the rotation is due to outer mass only. So, tension at 
free end will be zero.
Consider an infinitesimal element of mass dm and length dx at a distance x 
as shown.

 
=   

m
dm dx

L

For the dm element,

+ − = ⋅ ⋅ ω2T dT T dm x

 
= ⋅ ⋅ ω  

2m
dT dx x

L

ω
= = ⋅∫ ∫

L L2

r
r r

m
T dT x dx

L

   
 ω

=  
 

L2 2

r

m x
L 2

( )ω
= −

2
2 2

r

m
T L r

2L

Tension will be maximum at point O,
At O, r = 0

ω
=

2 2

O

m L
T

2L

Tension will be minimum at free end,
At free end, r = L

 ( )ω
= − =

2
2 2

e

m
T L L 0

2L

r
dm

T+dT

x
dx

T
P

O

Q.

Sol.
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A block of mass 2 kg is attached to a string having a length of 2m and the 
other end of the string is fixed. The block is being moved on a smooth hori-
zontal table with constant speed 5 ms–1. Find the tension in the string.

A block of mass m is moving with speed v against a smooth, fixed vertical 
circular groove having radius r kept on smooth horizontal surface.

Find the 
(a) Normal reaction applied by the floor on the block..
(b) Normal reaction applied by the vertical wall on the block.

A horizontal turn table rotating with a constant angular velocity w has a 
block of mass m kept on its edge. It is rotating along with the block about its 
axis. If the coefficient of friction is µ , find the friction force between block 
and table if the block is at rest with respect to table.

In this case, the centripetal force necessary 
for rotation is provided by tension, so,

	

2 2mv 2 5
T 25N

r 2
×

= = =

Here, normal reaction from the vertical wall provides the necessary centripetal 
force.
(a) Normal reaction due to the floor, FN mg=

(b) Normal reaction due to the vertical wall 
2

W

mv
N

r
=

The centripetal force is provided by friction force in this case. 
Friction force = centripetal force = 2mRω

Q.

Q.

Q.

Sol.

Sol.

Sol.
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A simple pendulum is made constructed by attaching a bob of mass m to a 
string of length L fixed at its upper end. The bob oscillates in a vertical cir-
cle. If is found that the speed of the bob is v when the string makes an angle 
θ  with the vertical, then what is the tension in the string and the magnitude 
of net force on the bob at the instant.

A hemispherical bowl of radius R is rotating about its axis of symmetry 
which is kept vertical. A small ball kept in the bowl rotates with the bowl 
without slipping on its surface. It the surface of the bowl is smooth and the 
angle made by the radius through the ball with the vertical is θ . Find the 
angular speed at which the bowl is rotating.

(a)	 The forces acting on the bob are
	 (i)	 the tension T
	 (ii)	 the weight mg
	 As the bob moves in a circle of radius L 
with centre of O,

	 a centripetal force of magnitude 
2mv

L
 is 

required towards O. 

	 This force will be provided by the resultant 
of T and 
	 mg cosθ . Thus, 

	

2mv
T mgcos

L
− θ =

	

	

2v
T m gcos

L
 

⇒ = θ + 
 

(b)	� Since Ca  is provided by (T — mg cos θ ) acting radially inwards, so 
2

c

T mgcos v
a

m l
− θ

= = .

	
( )

2222 2
net T C

v
a a a g sin

l
 

= + = α +  
 

	

4
2 2

net net 2

v
| F | ma m g sin

L
= = α +



Q.

Q.

Sol.
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A ring which can slide along the rod is kept at midpoint of a smooth rod of 
length L. The rod is rotated with constant angular velocity ω  about vertical 
axis passing through its one end. Ring is released from mid-point. Find the 
velocity of the ring when it just leaves the rod. 

Let ω  be the angular speed of rotation of the bowl. Two forces are acting on 
the ball.

(a) Normal reaction (N)

(b) Weight (mg)

The ball is rotating in a circle of radius r( R sin )= θ  with centre at A at an angular 
speed ω . Thus, 

2 2Nsin mr mR sinθ = ω = ω θ

2N mR⇒ = ω

and Ncos mgθ =

Dividing (1) by (2), we get

	

21 R
cos g

ω
=

θ

	

g
Rcos

⇒ ω =
θ

Q.

Sol.
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A block of mass m is tied to a spring of spring constant k, natural length l 
and the other end of spring is fixed at O. If the block moves in a circular path 
on a smooth horizontal surface with constant angular velocity ,ω  find ten-
sion in the spring.

Assume extension in the spring is x.
Here centripetal force is provided by spring force.

	
2kx m (l x)= ω +

⇒ 	
2

2

m l
x

k m
ω

=
− ω

⇒ 	 Tension 
2

2

km l
kx

k m
ω

= =
− ω

Q.

Sol.

Rearranging and integrating, we get
L v

2

L/2 0

xdx vdvω =∫ ∫

L v2 2
2

L/2 0

x v
2 2

   
⇒ ω =   

   

2 2 2
2 L L v

2 8 2
 

⇒ ω − = 
 

3
v L

2
⇒ = ω

Velocity at time of leaving the rod is the resultant of tangential speed and the 
radial speed of the particle. So,

2

2 3 7
v ' ( L) L L

2 2

 
= ω + ω = ω  

 

Sol.
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A block of mass m is kept on rough horizontal turn table at a distance r from 
centre of table. Coefficient of friction between turn table and block is .µ  
Now turn table starts rotating with uniform angular acceleration .α
(a) Find the time after which slipping occurs between block and turn table.
(b) Find angle made by friction force with velocity at the point of slipping. 

(a)	 1a r= α

	

dv
r

dt
= α

	 Speed after t time, v 0 rt= + α

	 Centripetal acceleration 

	

2
2 2

C

v
a rt

r
= = α

	 Net acceleration 2 2
net t ca a a= +

	
2 2 2 2 4

net
a r r t⇒ = α + α

	 When the block just starts slipping, 2 2 4 2 4
netmg ma m r r tµ = = α + α

	

1/42 2 2 2

4 2

g r
t

r

 µ − α
⇒ =  

α 

	

1/42 2

4

g 1
t

r

    µ ⇒ = −   αα     

(b)	  C

t

a
tan

a
θ =

	

2 2rt
tan

r
α

⇒ θ =
α

	
1 2tan ( t )−⇒ θ = α

Q.

Sol.
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A plumb-line is set up on rotating disk and makes an angle α  with the ver-
tical, as in figure. The distance r from the point of suspension to the axis of 
rotation is known, and so is the length l of the thread. The angular velocity 
of rotation is.

Tcos mgα =

2T sin m(r l sin )α = + α ω

2 g tan
r l sin

α
⇒ ω =

+ α

g tan
r l sin

α
⇒ ω =

+ α

Q.

Sol.
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Centrifugal Force
Then, tension in string, T = mac

Centrifugal force is pseudo force of circular 
motion.
Consider a bob of mass m rotating in a circle of 
radius r with angular speed ω.
For an observer on ground, bob is rotating in 
circular path. So, it has centripetal acceleration 
towards centre O.
Then, tension in string, T = mac

= ω2T mR

For an observer sitting on the bob, the acceleration of bob is zero, but the ground observer 
says that bob has acceleration ac.

So, as per the observer on bob, there must be another force balancing the tension. This 
force is the Pseudo force as the observer on bob is sitting in non-inertial frame.

So, for the observer on bob,

Then,	 T – Fs = m(0)

		  T = Fs

= ω2T mR

This force Fs = mRω2 is the Pseudo force which is also known as “Centrifugal force”.

Centripetal force and centrifugal force cannot be used together at same time, as centripetal 
force is from ground frame and centrifugal force is from reference frame of rotating body.

Observer
on bob

R

m

O

�

Observer on ground

T

m

a = 0

T F  = ma  = mRs c ω2

A cart of mass m is moving on the given path. Find the normal reaction at 
point P.

v
m

P

R

v

Q.
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Find normal reaction on the cart at given position.

v

R

N

O

mg

Net force towards centre = mac

− =
2mv

N mg
R

Normal reaction, = +
2mv

N mg
R

v

R

Q.

Sol.

	y From ground frame
Net force towards centre = m × ac

− =
2mv

mg N
R

= −
2mv

N mg
R

	y From frame of reference of cart :

+ =
2mv

N mg
R

= −
2mv

N mg
R

ac
mg

R

N

mg

N

a=0

mv2

R

Sol.
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The 4 kg disk D is attached to the end of cord as shown in figure. The oth-
er end of the cord is tied at the centre of a platform. If the platform is ro-
tating rapidly and the disk is placed on it and released from rest as shown, 
determine the time, in seconds, it takes for the disk to reach a speed great 
enough to break the cord. The maximum tension the cord can sustain is 100 
N and the coefficient of kinetic friction between the disk and the platform is 

K 0.1µ = . Take 2g 10ms−= .

Tension acts as centripetal force for the disk.

Maximum tension, 
2 2mv (4)(v )

T 100
r (1)

= = =

1v 5ms−⇒ =

Now, using the equation of motion, v=u+at

 

mg
5 0 t

m
5 g t

 µ
= +  

 
= µ

5
t 5s

(0.1)(10)
⇒ = =

Q.

Sol.

A smooth wire of length 2 rπ  is bent into a 
circle and kept in a vertical plane. A bead can 
slide smoothly on the wire. When the circle 
is rotating with angular speed ω  about the 
vertical diameter AB, as shown in figure, the 
bead is at rest with respect to the circular 
ring at position P as shown. Then the value of 

2ω  is equal to

Q.
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Let θ  be the angle with the vertical, then 

r / 2 1
sin

r 2
θ = =

1 o1
sin 30

2
−  

⇒ θ = = 
 

Ncos mgθ = 					     ……. (1)
2

C

m r
Nsin F

2
ω

θ = =
				    ……. (2)

2r
tan

2g
ω

⇒ θ =

2 2g tan 2g
r 3 r

θ
⇒ ω = =

Sol.

Turning of vehicles on Circular Roads

When vehicles go through turnings on curved roads, they travel along a nearly circular 
arc. To make the circular turn possible, there must be some force which will produce the 
required centripetal acceleration. 

If the vehicles take a turn on a horizontal circular path, the resultant force producing 
centripetal acceleration is also in horizontal direction. The required necessary centripetal 
force is being provided to the vehicles in following three ways.

(a) By friction only.

(b) By banking of roads only.

(c) Both by the friction force and banking of roads.

In real life, the centripetal force is provided by both friction force and banking of roads.
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By Friction only: Vehicle on a level road
When a vehicle goes around a curved road, it shows a tendency to skid sideways i.e., away 

from the centre of the curved road. Due to this tendency, the static friction sf  acts towards 
the centre and provides the necessary centripetal force for motion along the curved path. 

(a) The forces acting on the vehicle are 
(b) Weight (Mg) acting vertically downward
(c) Normal reaction (N) 

Static frictional force ( sf )

The static friction is self adjusting and if sµ is coefficient of static friction, then s sf N≤ µ . So, 
For vertical equilibrium, N = Mg

As frictional force provides the necessary centripetal force, so 
2

s

Mv
f

r
=

	 As s sf N≤ µ

	 ⇒  
2

s

Mv
N

r
≤ µ

	
2

s

Mv
Mg

r
⇒ ≤ µ

	 sv rg⇒ ≤ µ

	 So, maximum speed for no skidding is

	 max sv rg= µ
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Maximum Velocity for Skidding and Overturning 
Let A and B be inner and outer wheels of a vehicle moving on a circular track. 

The forces acting on the vehicle are-

(a) normal reactions, 1N  and 2N  (vertically upwards)

(b) frictional forces, 1 1f N= µ  and 2 2f N= µ
(c) Weight of vehicle, Mg (vertically downwards)
(d) centripetal force F (horizontally towards centre of turn)
For translational equilibrium 

	 1 2N N Mg+ = 				    …….. (1)

And, total friction force provides the necessary centripetal force 

	
2

1 2 1 2

Mv
F f f N N

r
= + = µ + µ ≥

A circular curve on a level road has a radius of 100 m. What is the maximum 
speed which a car turning this bend can have without skidding. Given: m = 
0.6.

	 maxv rg 0.6 100 10= µ = × ×

⇒ 	 maxv 0.6 100 10= × ×

⇒ 	 maxv 600=

⇒ 	
1

maxv 10 6ms−=

Q.

Sol.
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⇒ 	
2

1 2

Mv
(N N )

r
µ + ≥ 			   …….. (2)

Where r is the radius of the circular path. 

Using (1), equation (2) gives.

⇒ 	
2Mv

Mg
r

µ ≥  ( for no skidding)

⇒ 	 v rg≤ µ

Thus, maximum speed for no skidding is 

	 maxv rg= µ 				    ……… (3)

For No Overturning 

If the wheels A and B are at a distance “2a” apart, then taking moments about G, we get 

2 1N a Na Fh= + ,  where 
2Mv

F
r

= .

The car tends to overturn when reaction 1N  on the inner wheel is zero, i.e., when inner wheel 

leaves contact with the ground. Then,  2N . a Fh≥

If 1N 0,=  then from (1),  2N Mg=

	
2Mv

Mga h
r

⇒ ≥

	 gra
v

h
⇒ ≤

So, the maximum speed for no overturning is 

	 max

gra
v

h
=

By Banking of Roads / Tracks
When a vehicle moves round a curve on the road with sufficient speed, then there is a 
tendency of overturning the vehicle. To avoid this, the road is given a slope rising outwards. 
The phenomenon is known as banking of roads.
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Consider a vehicle on a road having a slope θ . N is the normal reaction of the ground. 
This may be resolved into two components: A vertical component Ncos θ  which balances 
the weight of vehicle and a horizontal component Nsin θ  which provides the necessary 
centripetal force i.e.,

	

2Mv
Nsin

r
θ =

And, Ncos Mgθ =

Dividing equation (1) by (2), we get
2v

tan
rg

θ =

This equation gives the angle of banking required.

Let l(= OB) be the width of track and h (= AB) be its height. 

Assuming θ  (the angle of banking to be small), then

h
tan sin

l
θ = θ =

2h v
l rg

⇒ =

2v l
h

rg
⇒ = , is the height through which outer part of the track has to be raised. 
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By both Friction and Banking of Road
If the vehicle moves on a circular road which is rough and banked also, then three forces 
may act on the vehicle. Out of these three forces, the weight (mg) is fixed in magnitude as 
well as in direction. 

A circular track of radius 600 m is to be designed for cars at an average 
speed of 180 kmh–1. What should be the slope of the track?

Let the angle of banking be θ . The forces on the car are (shown in figure)
(a) weight of the car (Mg, downwards) and 
(b) normal reaction (N).

For proper banking of the road, we do not need the static friction force.
For vertical direction the acceleration is zero. So,
Ncos Mgθ = 				    ………. (1)

For horizontal direction, the acceleration is 
2v
r

 to towards the centre, so that
2mv

Nsin
r

θ =
				   ………. (2)

From (1) and (2)
2v

tan
rg

θ =

Substituting the values 

( )
2

21
2 2 2

2 2

5180 ms
180 km h 18

tan 0.4167
600m 10ms 600m 10ms

−
−

− −

 
× 

 θ = = =
× ×

Slope= tan 0.4167θ =

Q.

Sol.
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The direction of second force, i.e., normal reaction N is also fixed (perpendicular to road).

The direction of the third force i.e., friction f can be either inwards or outwards and its 

magnitude can be varied up to maximum limit ( )Lf N= µ .

So, the magnitude of normal reaction N, direction of friction and magnitude of friction f 

are so adjusted so the resultant of the three forces mentioned above is 
2mv

r
 towards the 

centre. 

Since, m and r are also constant so, magnitude of normal reaction N, direction of friction 
and magnitude of friction mainly depends on the speed of the vehicle v. Thus, situation 
varies from problem to problem. 

(a)	� friction f will be outwards if the vehicle is at rest (v = 0), because in this case the 

component of weight mg sinθ  is balanced by f. 

(b)	friction f will be inwards if

	 v rg tan> θ

(c)	 friction f will be outwards if

	 v rg tan< θ  , and 

(d)	friction f will be zero if 

	 v rg tan= θ

(e)	 for maximum safe speed (shown in figure below), 
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2Mv
Nsin f cos

r
θ + θ = 				    ……… (1)

	 Ncos f sin Mgθ − θ = 					     ……… (2)

As maximum value of friction is maxf N= µ ,

So, Ncos Nsin Mgθ − µ θ = , and 
2Mv

Nsin Ncos
r

θ + µ θ =

Then, 
( ) ( )

2MvMg
sin cos

rcos sin
θ + µ θ =

θ − µ θ

2sin cos v
cos sin rg

θ + µ θ
⇒ =

θ − µ θ

max

rg(tan )
v

(1 tan )
θ + µ

⇒ =
− µ θ

(f)	� Similarly, for minimum possible safe speed, friction starts acting up the inclined plane, 
and we can find out that,

	 min

rg(tan )
v

(1 tan )
θ − µ

=
+ µ θ
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Conical Pendulum
If consists of a string OA, whose upper end O is fixed, and a bob is tied at the other free 
end. The bob is given a horizontal push through angular displacement θ  and arranged such 
that the bob describes a horizontal circle with uniform angular velocity ω  in such a way that 
the string always makes an angle θ  with the vertical. As the string traces the surface of the 
cone, the arrangement is called a conical pendulum. 

Let T be the tension in the string of length l and r be the radius of circular path. The vertical 
component of tension T balances the weight of the bob and horizontal component provides 
the necessary centripetal force. 
Thus,
		  Tcos Mgθ = 							       …….. (1)

And,	 2T sin Mrθ = ω 							      …….. (2)

Dividing (2) by (1), we get 

		
2r g tan

tan i.e.,
g r
ω θ

θ = ω = 					     …….. (3)

But r l sin= θ  and 2
,

π
ω = τ

τ
 being time period of completing one revolution.

⇒    

2 g tan
l sin

π θ
=

τ θ

This gives,

	

l sin
2

sing
cos

θ
τ = π

 θ
 θ 

	 ⇒   
l cos

2
g

θ
τ = π
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A circular turn on a road having a radius 20 m is banked for the vehicle of 
mass 200 kg going a speed of 10 ms–1. Find the direction and magnitude of 
frictional force acting on a vehicle if it moves with a speed (a) 5 ms–1  
(b) 15 ms–1 .
Take g = 10 ms–2 and assume that friction is sufficient to prevent slipping.

(a)	� The turn is banked for speed 1v 10ms−= . If θ  is the angle of banking, then 

	

2 2v (10) 1
tan

rg (20)(10) 2
θ = = =

	 Now, as the speed is decreased, force of friction f acts outwards.

	 Using the equations

	
2

x

mv
F

r
∑ =  and yF 0∑ = , we get 

	

2mv
Nsin f cos

r
θ − θ = 					     ………. (1)

	 Ncos f sin mgθ + θ = 					     ………. (2)

	� Substituting, 1 11
tan , v 5ms ,m 200kg

2
− − 

θ = = = 
 

 and r = 20 m, in equation 

(1) and (2), we get f 300 5N=  (outwards) 

Q.

Sol.
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Two balls of masses m1 and m2 are suspended by two threads of length l1  
and l2 at the end of a freely hanging rod, Determine the angular velocity w 
with which the rod must be rotated about the vertical axis so that it remains 
vertical. 

Q.

(b)	 In the second case, force friction will now act inwards.

	 Using 
2

x

mv
F

r
∑ =  and yF 0,∑ =  we get 

	
2mv

Nsin f cos
r

θ + θ = 				    …….. (1)
	 Ncos f sin mgθ − θ =

	� Substituting 1 11
tan , v 15ms ,m 200kg

2
− − 

θ = = = 
 

 and r 20m=  in equation 

(3) and (4), we get  f 500 5N=  (inwards)
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Free body diagrams of two masses and the rod are as shown in figure. 

Equations of motion are,

2
1 1 1 1 1T sin m l sinθ = ω θ

1 1 1T cos m gθ =

2
2 2 2 2 2T sin m l sinθ = ω θ

2 2 2T sin m gθ =

For the rod to remain in vertical position, 

1 1 2 2T sin T sinθ = θ

Solving the above equations, we get

	
2 2 2 2

4 1 2
2 2 2 2
1 1 2 2

m g m g
m l m l

 −
ω =   − 

Sol.
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A vehicle whose wheel track is 1.6 m wide, and centre of gravity is 1 m above 
the road, centred between the wheels, takes a curve whose radius is 50 m, 
on a level road. Taking -2g = 10ms , find the speed at which the inner wheel 
would leave the road.

The situation is shown in figure. Let 1N  and 1N  be the reactions at inner 
wheels and outer wheels respectively. “f” is the frictional force of the tracks. 
G represents the centre of gravity and Mg is the weight of the vehicle acting 
downwards at centre of gravity. For vertical equilibrium,

	 1 2N N Mg+ = 					     …….. (1)

For circular motion,

	
2Mv

f
r

= 						      ………. (2)

For rotational equilibrium, net moment of all the forces about G should be 
zero. Hence,

	
1 2

1.6 1.6
f(1) N N

2 2
   

+ =   
   

⇒ 	 1 20.8N f 0.8N+ = 					     ………. (3)

When the inner wheel leaves the road, then 1N 0= . Therefore from (3) we get

	 2f 0.8N= 						      ……….. (4)
And, from equation (1) we get 

	 2N mg=

Solving equation (2), (4) and (5), we get

	 1v (0.8) (50) (10) 20ms−= × × =

Q.

Sol.
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Motion in a Vertical Circle
Let a particle P be suspended in a vertical plane, by a massless, inextensible string from a 
fixed point O. In figure the string is vertical with P vertically below the point of suspension O.

The particle is in equilibrium. Let the particle be given an initial velocity 1v in horizontal 
direction as, shown in figure. The particle moves along a vertical circle (radius = length of 
the string). The point of suspension is the centre of the circle. 
This motion has to be non-uniform circular motion. Velocity of the particle changes both in 
magnitude and direction. 
Speed of particle decreases continuously as it moves up the circle (i.e., from P →  Q →  R) 
due to the work done against the force of gravity.
Speed of particle increases continuously as it moves down the circle (i.e. from R →  S→  P) 
due to work done by the force of gravity on the particle.

To get the basic characteristics of vertical circular motion, consider an instantaneous 
position of the particle at point L. 
This is shown in figure, where the string makes an angle θ  with the vertical line OP. At this 
position, the forces acting on the particle are 
(i) Weight (= mg) acting vertically downwards 
(ii) Tension (= T) acting along LO (in the string)
Direction of the instantaneous velocity v is along the tangent to the circle at L. The 

corresponding instantaneous centripetal force 
2mv

r
=  [where r (= length of string l) is radius 

of the circular path] acts along LO.

Vertical Circular Motion
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Taking components of mg, 
mg cos θ  acts opposite to LO and mg sin θ  acts opposite to v



 (along tangent to the 
circular path, i.e. perpendicular to LO.)
The 	 net force towards centre of the circle (along LO) = T — mg cos θ  this is necessary 

centripetal force 
2mv

r
 
= 
 

. 

So, 
2mv

T —mgcos
r

= θ

2mv
T mgcos

r
∴ = + θ 						      …… (1)

Taking horizontal direction at the lowest point P, as the position of zero gravitational potential 
energy.
As per law of conservation of energy, 
Total energy at P = Total energy at L 

2 2
1

1 1
mv 0 mv mgh

2 2
∴ + = + 					     …… (2)

Where MP = h, is the vertical height of the particle above P. 
OM = OL cos θ  = r cos θ  

( )MP h OP — OM r r cos r 1— cos∴ = = = − θ = θ

Or, h r(1 cos )= − θ 							      …… (3)

From equations (2) and (3)

	
2 2
1

1 1
mv mv mgr(1 cos )

2 2
= + − θ

or 2 2
1v v 2gr(1 cos )= + − θ 						     …… (4)

Put the value of 2v  from equation (4) in equation (1)

	
2
1

m
T [v 2gr(1 cos )] mgcos

r
= − − θ + θ

	

2
1mv

T 2mg(1 cos ) mgcos
r

= − − θ + θ

	

2
1mv

T 2mg 3mgcos
r

= − + θ 					     …….. (5)

This equation given tension T as a function of θ . We can use it to see the details when the 
particle is at (i) lowest point (P) (ii) mid way (horizontal) (Q) and, (iii) highest position (R)
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At P, θ  = 0 

The tension in the string = PT  

	

1
2

o
P

mv
T 2mg 3mgcos0

r
= − +   (from equation 5)

	

1
2

P

mv
T mg

r
= + 						      …….. (6)

At Q, o90θ =  string is in horizontal position. 

Let 2v


 be the instantaneous velocity at Q and let be the instantaneous tension is the 
string.
So,

	

2
o1

0

mv
T 2mg 3mgcos90

r
= − +

	

2
1

0

mv
T 2mg

r
= − 						      …….. (7)

The change in the tension, as the particle moves from P to Q

   

2 2
1 1

P 0

mv mv
T T mg 2mg

r r

   
= − = + − −      

   
 

      P 0T T 3mg− =

At highest point R, o180θ =

Let 3v


be the instantaneous velocity at R and let RT  the instantaneous tension in the string. 
Then,

	

2
o1

R

mv
T 2mg 3mgcos 180

r
= − +

	
2
1

R

mv
T 5mg

r
= − 						      …….. (8)

	 The change in tension in the string as the particle moves from P to R

	 P RT T= −
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1
2 2

1
mv mv

mg 5mg
r r

   
 = + − −      

	 P RT T 6mg− =

⇒  The tension in the string is maximum at lowest point P.
And, the tension in the string is minimum at highest point R.
This is so because at the highest point, a part of centripetal force, needed to keep the 
particle moving in circular path is provided by weight (mg) of the particle.
From equation (8), we can see that RT  can be (i) positive (ii) negative or (ii) zero, depending 
on the value of 1v . 

When RT  becomes negative, string slackens and the particle will fall down before completing 
its circular path. 
⇒Minimum value of TR should be zero for completing the vertical circle.

So, 
2

1 min
R min

m(v )
(T ) 5mg 0

r
= − =  

1 min(v ) 5gr∴ = 							       …… (9)

Using equation (4), the minimum speed, which the particle must have at the highest point 
R, so that it completes the vertical circle, is given by

	 2 2 o
1 min 3 min(v ) (v ) 2gr(1 cos 180 )= + −     (As o180θ =  at R)

	  2
3 min5gr (v ) 4gr= + 		

or  3 min(v ) gr= 							      … (10)

When the particle completes its motion along the vertical circle, it is called ‘looping the 

loop’. For this, minimum speed at the lowest point must be 5gr .
Let us calculate tension in the string, when the particle is just able to do ‘looping the loop’ 
corresponding to 

	 1 1 minv (v ) 5gr= =

	 We can see that for 1v 5gr= ,

	 P

m
T (5gr) mg 6mg

r
= + = 	 and,

	 R

m
T (5gr) 5mg 0

r
= − =

Note:

If 0v 5gl,≥  the bob will complete full circular path.

If 0v 5gl,=  the tension at the top is zero but the velocity is gl 0> . 
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If 02gl v 5gl< < , the bob leaves the circular trajectory when the tension in the string 
is zero, but the speed of the bob is not zero. When the bob leaves the circular trajectory, 

o o90 180< θ < , where θ  is the angular displacement from the lowest position of the bob.

If 00 v 2gl< ≤ , the bob will oscillate about the lowest position having maximum angular 

displacement o( 90 )θ ≤ . For o
0 90θ = , the speed as well as tension will be zero.

A particle of mass m slides down a smooth curved surface, which ends 
into a vertical loop of radius R. What should be the minimum height h such 
that if the particle released from it, does not fall at the uppermost point 
of the loop?

If the particle does not fall at the highest point, then normal reaction at highest 
point A 

AN 0≥

F.B.D. at topmost point A

2

min

mv
N mg v v ,

r
+ = ⇒ =

 when AN 0=

minv gR= 					     ……… (1)

Applying conservation of energy between initial and final points.

i i f fK U K U+ = + 			   [Assuming final point as a reference]

21
0 mg(h 2R) mv

2
⇒ + − =

Q.

Sol.
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A small stone of mass 0.4 kg tied to a massless inextensible string is made 
to loop the loop. Radius of the path is 4 m. Find its speed at the highest 
point. How would this speed change if mass of the stone is decreased by 
10% (g = 10 ms–2).

Speed at highest point 1gr 10 4 6.32ms−= = × =

It does not depend on the mass of the stone. So, this speed remains the same 
on changing mass of the stone. 

Q.

Sol.

The figure shows a small ball of mass 
0.1 kg placed on a smooth plane sur-
face OA which acquires a semi-circular 
shape ABC of radius 2m. The ball just 
touches a light spring of stiffness 1000 
N/m. The ball is pushed to the left to 
compress the spring by a distance 
x and released. This ball then starts 
moving towards the circular track 
ABC. (g = 10 m/s2)
(a)	� Find the minimum work done by external agent to push the ball to the 

left through 50 cm. 
(b)	 If the ball is pushed to the left by 5 cm and released, calculate 
	 (i) Normal force on the ball just after crossing A.
	 (ii) �Maximum angle covered with respect to PA on the circular track be-

fore it comes to rest.
(c)	� What is the minimum distance xmin by which the ball should be pushed to 

the left and released so that is can reach up to C?
(d)	 If the ball is pushed to left by 0.7 xmin , calculate
	 (i) Reaction force between ball and track at point B
	 (ii) Maximum height attained by the ball above horizontal surface OA.

Q.

2g(h 2R) gR⇒ − =
2h 4R R⇒ − =

5R
h

2
=
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(a)	� When the work done by external force to push the ball against the spring 
is minimum, there should be no kinetic energy of the ball. The work done 
is only responsible for its potential energy.

	 21
W kx

2
∴ =

	
2

1 5
W 1000 1.25J

2 100
 

⇒ = × × = 
 

(b)	� As the ball leaves the spring, it will be moving towards right with a speed 
v, such that the potential energy of the spring changes to kinetic energy of 
the ball.

	 2 21 1
mv kx

2 2
⇒ =

	 k
v x

m
⇒ =

	 As, k = 1000 N/m, m = 0.1 kg, x = 5 cm=0.05 m, so

	 1000
v 0.05 5m / s

0.1
= × =

	 (i) �As it crosses A, its path becomes circular, and it experiences a centripetal 
acceleration.

		
2

c

v
a

R
=  

		  By Newton’s nd2  law,

		  N — mg = 2 ca

		  ( )
2mv 25

N mg 0.1 10 0.1 2.25N
R 2

 
= + = × + × = 

 
	 (ii) �As the ball rises on the track, its gravitational potential energy increases, 

and kinetic energy decreases. As it comes to rest, kinetic energy 
becomes zero. If it happens at a height h, then,

		  By conservation of energy, 

		  21
mgh 0 0 mv

2
+ = +

		
2 2v 5 25

h 1.25m
2g 2 10 20

= = = =
×

		  Now, 2 h 2 1.25 0.75 3
cos

2 2 2 8
− −

θ = = = =

		  1 3
cos

8
−  

⇒ θ =  
 

Sol.
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(c)	� Let the spring is compressed by minx  and the speed of the ball after leaving 

contact with spring is v, then by energy conservation, 2 2
min

1 1
mv kx

2 2
=

	 min

k
v x

m
=

	� Now, to complete circular motion, minimum speed at A should be equal to 

5gR .

	 min

k
x 5gR

m
⇒ =

	 minx 0.1m⇒ =

(d)	� When the spring is compressed by 0.7 minx 0.07m,=  the speed acquired by 

the ball is k 1000
v x 0.07 7

m 0.1
= = × =  m/s

	 (i) �As the ball reaches B, its speed becomes Bv  , then by conservation of 
mechanical energy,

	   	  2 2
B

1 1
mv mv mgR

2 2
= +

		  2
Bv v 2gR 49 40= − = −  

		  Bv 3=  m/s

		  The FBD of ball at B is shown.

	 The radial acceleration at this instant is 
2

2
C

v
a 4.5 m / s

R
= =

	 By Newton’s nd2  law,

	
2
Bmv 9

N 0.1 0.45N
R 2

= = × =

 	 (ii) �As the speed at lowest point is less than that required to complete the 
circular

		  track and reach C, the ball will leave the track before it reaches C. 

		�  If it occurs at D such that OD makes an angle θ  with OC, let Dv  be the 
speed at this position.

		  The height at D is, h = R(1 + cos θ )
		  By conservation of mechanical energy.
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		  2 2
D

1 1
mv mv mgR(1 cos )

2 2
= + + θ 			   ….. (1)

		  At D, FBD of the ball is shown.

		  As the ball leaves the track at D, normal reaction is zero.
		  By Newton’s nd2  law in radial direction, 

		
2
Dmv

mgcos
R

θ =

		  2
0v gRcos= θ 					     ……… (2)

		  From (1) and (2),

		  21 1
mv mgRcos mgR(1 cos )

2 2
= θ + + θ

		  2v 2gR 3gRcos− = θ

	
( )

( )
22 7 2 10 2v 2gR 3

cos
3gR 203 10 2

− × ×−
⇒ θ = = =

× ×

	 3 23
h R 1 2 2.3m

20 20
 

∴ = + = × = 
 

		�  From point D, the ball moves in a parabolic path under the action of 
gravity alone. From this point onwards, it rises further to a height H 
given by, 

		
2 2
Dv sin

H
2g

θ
=

		  ⇒ 	
2gRcos sin

H
2g
θ θ

= 		  [from (1)]

		  2 3 9 3 391 1173
H 1 m

2 20 400 20 400 8000
 

⇒ = × × − = × = 
 

		  Maximum height above OA is 1173
2.3 2.45m

8000
+ =




