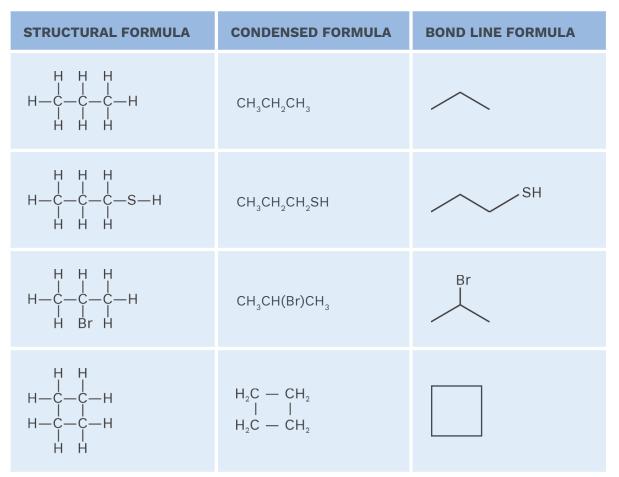

Nomenclature

Organic Compound

Wohler prepared first man-made organic compound disapproving **Vital Force Theory** by preparing Urea. The following is the reaction showing the synthesis of Urea.

Definitions

Hydrocarbon and its derivatives are known as Organic Compound and Study of Organic Compound is called as Organic Chemistry.


NH₄Cl ⊣	- KCNO	$\xrightarrow{\Lambda}$ NH ₄ CNO +	- KCl
Ammonium Chloride	Potassium Cyanate	Ammonium Cyanate	Potassium Chloride

 $\begin{array}{c} \mathsf{NH_4CNO} & \xrightarrow{\mathsf{Heat}} & \mathsf{NH_2CONH_2} \\ \texttt{Ammonium Cyanate} & & \texttt{Urea} \end{array}$

Vital Force Theory/Berzelius Hypothesis :

It states that Organic Compounds can only be prepared in living body.

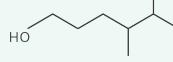
• Structural Representation of Organic Compound

NCERT PrepUp 12.4 (Pg. 337)

Expand each of the following condensed formulas into their complete structural formulas.

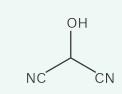
(a) CH₃CH₂COCH₂CH₃

Solution
(a)
$$H - \begin{array}{c} H & H & O & H & H \\ I & I & I & I \\ H & H & H \end{array}$$
 (b) $H - \begin{array}{c} H & H & H & H & H \\ I & I & I & I \\ - & C & - & C & - & C \\ H & H & H \end{array}$ (b) $H - \begin{array}{c} C & - & C & - & C \\ - & C & - & C & - & C \\ - & C & - & C & - & H \\ - & H & H & H & H \end{array}$


NCERT PrepUp 12.5 (Pg. 337)

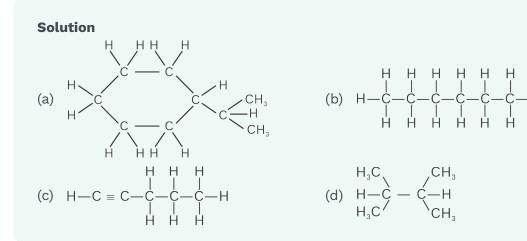
For each of the following compounds, write a condensed formula and also their bond-line formula.

(b) $N \equiv C - CH - C \equiv N$


Solution

Condensed formula : (a) HO(CH₂)₃CH(CH₃)CH(CH₃)₂ Bond-line formula: (a)

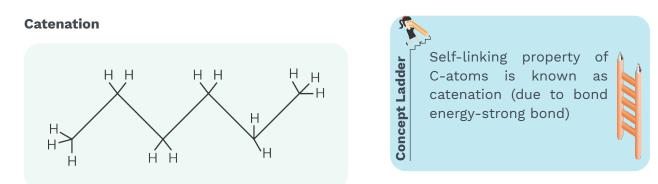

(b) HOCH(CN)₂


(b)

NCERT PrepUp 12.6 (Pg. 337)

Expand each of the following bond-line formulas to show all the atoms including carbon and hydrogen

Nomenclature


H H

H Ĥ

H

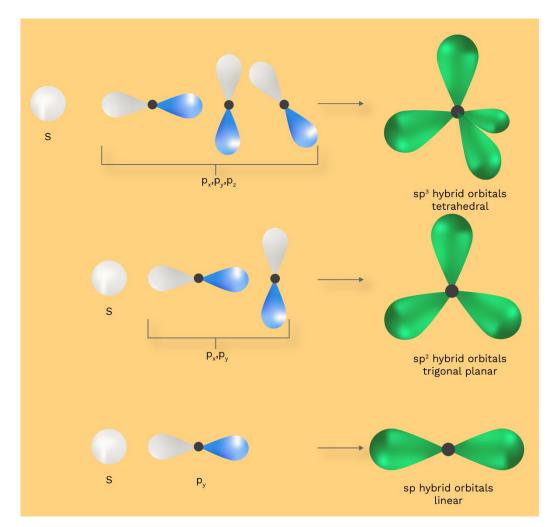
H

—Н

Zig-Zag fashion chain

Rack your Brain

Why Carbon forms large number of compounds?

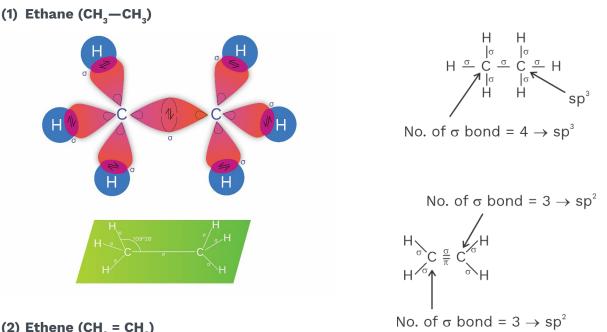

Hybridization

It is a phenomenon of mixing of atomic orbitals of different shape, size and energy to form new equivalent orbitals of same shape, size and energy is called hybridization.

Buckminster Fullerene

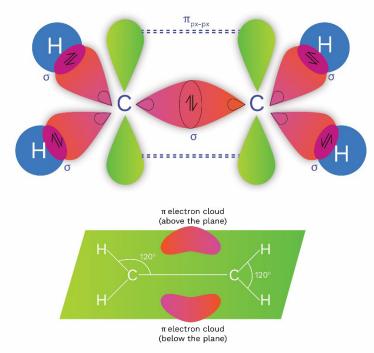
Types of Hybridization

- (1) sp³-Hybridization (Tetrahedral shape)
- (2) sp²-Hybridization (Trigonal planar)
- (3) sp-Hybridization (Linear shape)

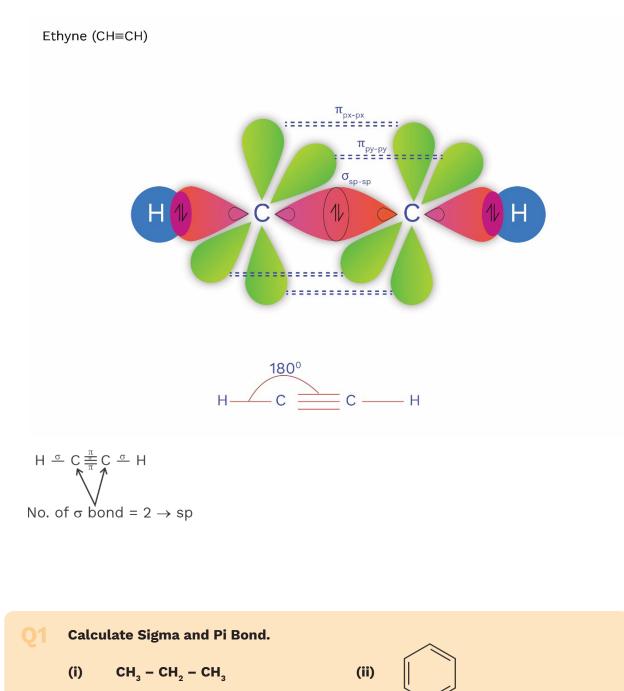


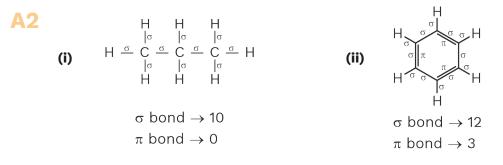
Tricks for Determination of Hybridization

Carbon always form 4 bonds


EXAMPLE	NO. OF SIGMA BONDS	HYBRIDIZATION	BOND ANGLE	SHAPE
茶	4	sp³	109.28'	Tetrahedral
> =	3	sp²	120°	Trigonal Planar
÷-¢=	2	sp	180°	Linear

(1) Ethane (CH₃-CH₃)




(2) Ethene ($CH_2 = CH_2$)

Ethene ($CH_2 = CH_2$)

(3) Ethyne (CH \equiv CH)

NCERT PrepUp 12.1 (Pg. 335)

How many σ and π bonds are present in each of the following molecules? (a) HC=CCH=CHCH₃ (b) CH₂=C=CHCH₃

Solution

(a) σ_{C-C} : 4; σ_{C-H} : 6; $\pi_{C=C}$: 1; C = C : 2

(b) σ_{C-C} : 3; σ_{C-H} : 6; $\pi_{C=C}$: 2

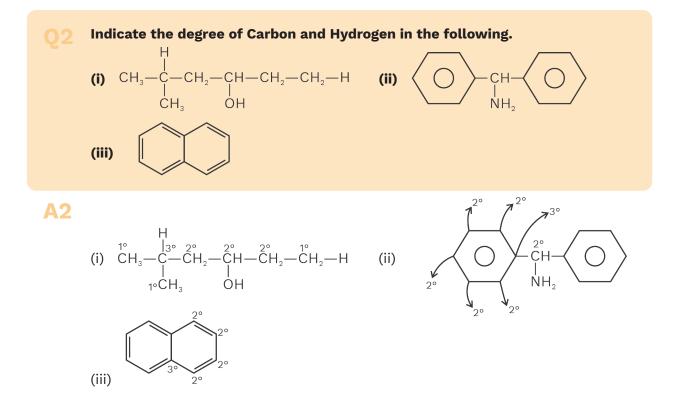
NCERT PrepUp 12.2 (Pg. 335)

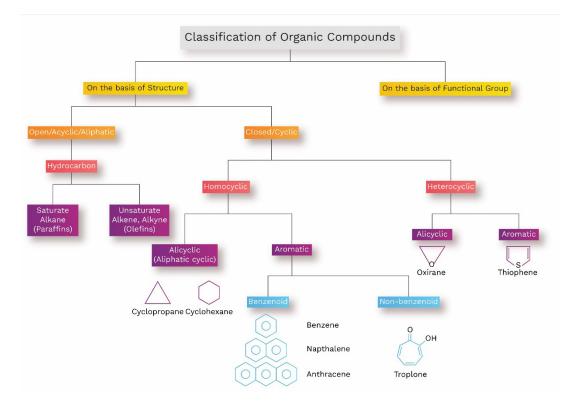
What is the type of hybridisation of each carbon in the following compounds? (a) CH_3Cl (b) $(CH_3)_2CO$ (c) CH3CN (d) $HCONH_2$ (e) $CH_3CH=CHCN$

Solution

(a) sp³ (b) sp³, sp² (c) sp³, sp (d) sp² (e) sp³, sp², sp², sp

NCERT PrepUp 12.3 (Pg. 335)


Write the state of hybridisation of carbon in the following compounds and shapes of each of the molecules. (a) $H_2C=O$ (b) CH_2F (c) $HC\equiv N$.


Solution

- (a) sp² hybridised carbon, trigonal planar;
- (b) sp³ hybridised carbon, tetrahedral;
- (c) sp hybridised carbon, linear.

Degree of Carbon and Hydrogen

- (1) 1° carbon atom Only one electronic valency of carbon atom is satisfied by the other carbon atoms.
- (2) 2° carbon atom Two electronic valency of carbon are satisfied by the other carbon atoms.
- (3) 3° carbon atom Three electronic valency of carbon atom are satisfied by the other carbon atoms.
- (4) 4° carbon atom Four electronic valency are satisfied by the other carbon atom.

Classification of Organic Compound

Concept Ladder

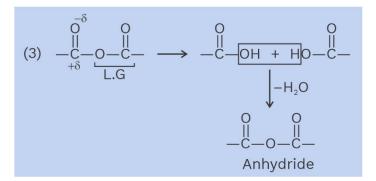
An organic compound X(molecular formula $C_6H_7O_2N$) has six carbon atoms in a ring system, two double bonds and a nitro group as substituent, X is

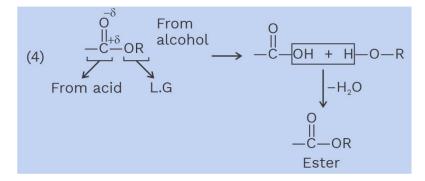
[NEET-1990]

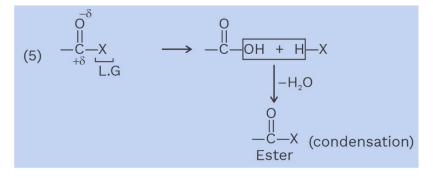
- (1) homocyclic but not aromatic
- (2) aromatic but not homocyclic
- (3) homocyclic and aromatic

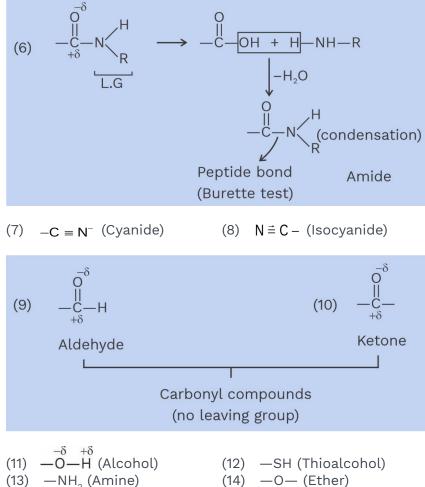
Previous Year's Questions

(4) heterocyclic and aromatic

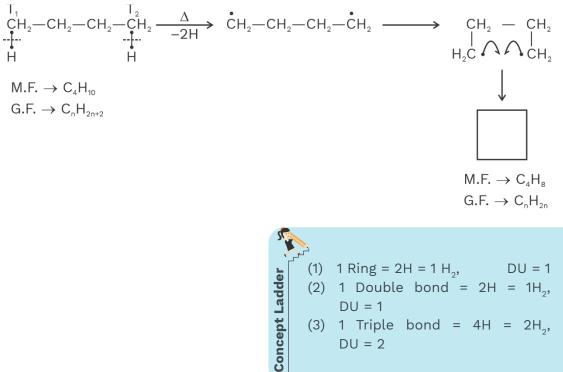

Alicyclic compounds are the combination of Aliphatic compounds enclosed in cyclic form.


• Functional Group


(1)
$$\begin{array}{c} O \\ \parallel & -\delta & +\delta \\ -O \\ L.G \end{array}$$
 (2) $\begin{array}{c} O \\ \parallel & -\delta & +\delta \\ -S \\ -O \\ L.G \end{array}$


Carboxylic acid

ö L.G Sulphonic acid

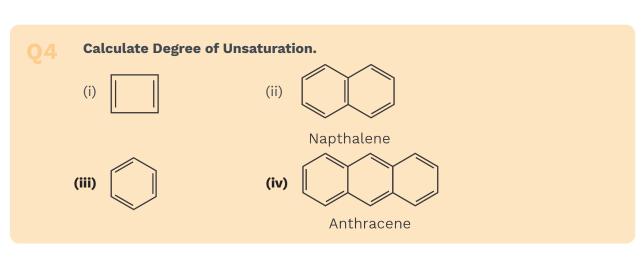

(11)	—U—H (Alconol)	
(13)	$-NH_2$ (Amine)	

Concept Ladder

Homologous Series contains members having -CH₂ difference in formula for consecutive members and have same Chemical Properties but different Physical Properties.

• Homologous Series

S. NO.	NAME OF SERIES	I-HOMOLOGUE	II-HOMOLOGUE
(i)	Alkane (C _n H _{2n+2})	CH4	CH ₃ -CH ₃
(ii)	Alkene (C _n H _{2n})	CH ₂ =CH ₂	CH ₂ =CH-CH ₃
(iii)	Alkyne (C _n H _{2n-2})	HC≡CH	HC≡C−CH ₃
(iv)	Halo alkane (C _n H _{2n+1} X)	CH ₃ -X	CH ₃ -CH ₂ -X
(v)	Alcohol (C _n H _{2n+2} O)	CH ₃ -OH	CH ₃ -CH ₂ -OH
(vi)	Ether (C _n H _{2n+2} O)	CH ₃ -O-CH ₃	CH ₃ -O-CH ₂ -CH ₃
(vii)	Aldehyde (C _n H _{2n} O)	Н-СНО	CH ₃ -CHO
(viii)	Ketone (C _n H _{2n} O)	CH ₃ -CO-CH ₃	$CH_3 - CO - CH_2 - CH_3$
(ix)	Carboxylic acid (C _n H _{2n} O ₂)	Н-СООН	CH3-COOH
(x)	Ester $(C_nH_{2n}O_2)$	HCOOCH ₃	HCOOCH ₂ CH ₃
(xi)	Amide (C _n H _{2n+1} NO)	H-CONH ₂	CH ₃ -CONH ₂
(xii)	Nitro alkane (C _n H _{2n+1} NO ₂)	CH ₃ NO ₂	CH ₃ CH ₂ NO ₂
(xiii)	Amine (C _n H _{2n+3} N)	CH ₃ -NH ₂	CH ₃ -CH ₂ -NH ₂



Degree of Unsaturation (DU) or Index of H-deficiency

Δ	
A	

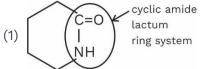
3 Calculate Degree of Unsaturation.	
$C_{2}H_{2}, C_{2}H_{4}, C_{3}H_{6}, C_{4}H_{6}, C_{6}H_{6}, C_{10}H_{10}$	

A3	M.F	Alkane	
	C_2H_2	C ₂ H ₆	$4H \Rightarrow 2H_2$, DU = 2
	C ₂ H ₄	C ₂ H ₆	$2H \Rightarrow 1H_2$, DU = 1
	C ₃ H ₆	C ₃ H ₈	$2 { m H} \Rightarrow 1 { m H}_2$, DU = 1
	C ₄ H ₆	C ₄ H ₁₀	$2 { m H} \Rightarrow 1 { m H}_{_2}$, DU = 1
	C ₆ H ₆	C ₆ H ₁₄	$8 { m H} \Rightarrow 4 { m H}_2$, DU = 4
	C ₁₀ H ₁₀	C ₁₀ H ₂₂	$12H \Rightarrow 6H_2$, DU = 6

Δ4	(i)	DU = 3	(ii)	DU = 7
	(iii)	DU = 4	(iv)	DU = 10

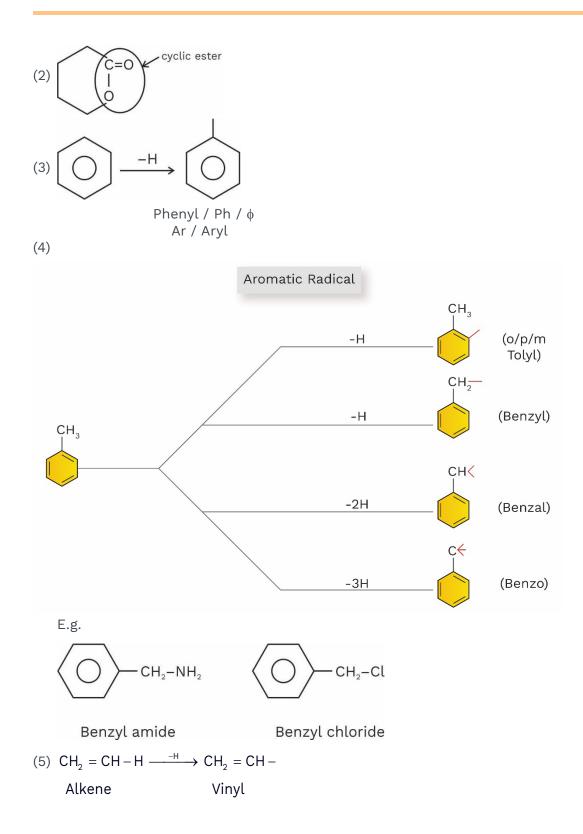
• Acyclic Alkane

$$DU = \frac{\begin{pmatrix} No. \text{ of H-atoms in} \\ acyclic alkane \end{pmatrix}}{2} - \begin{pmatrix} No. \text{ of H-atoms in} \\ given compound \end{pmatrix}}$$


DU tells total number of double and triple bonds in a compound.

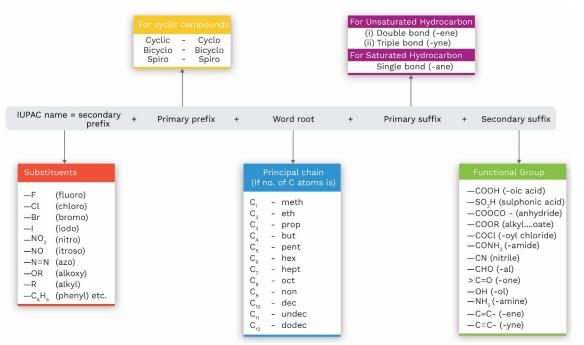
• Calculation of DU in Heteroatom containing compound Alkane

(1)
$$C_4H_{10}O$$
 Alkane
 $C_4H_{10} \Rightarrow C_4H_{10}$, DU = 0
(2) C_4H_8O C_4H_{10} , DU = 1


(3)
$$CH \equiv C - C = C - OH, DU = 5$$

Some Extra Points

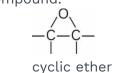
Nylon ≡ Amide E.g. Caprolactam = Nylon-6 Deficiency of H₂ molecule in given compound with respect to acyclic alkane is DU.


Concept Ladder

E.g.
CH₂ = CH - Cl
Vinyl chloride
(6) CH₂ = CH - CH₂ - H
$$\longrightarrow$$
 CH₂ = CH - CH₂ -
Allyl
E.g.
CH₂ = CH - CH₂ - OH
Allylic alcohol
(7) CH₄ $\xrightarrow{-+-} \rightarrow$ CH₃ - $\xrightarrow{-+-} \rightarrow$ -CH -
Methane Methyl Methylene Methylidyne
or
Methylidene
(9) CH = C - $\stackrel{+}{C} - \stackrel{-}{C} - \stackrel{-}{C} - OH$
Calculate :
(1) DU (2) No. of double bond (3) No. of triple bond
(4) No. of Acetylenic bond (5) No. of Olefinic bond
(1) DU = 6 (2) No. of double bond = 2
(3) No. of triple bond = 2 (4) No. of Acetylenic bond = 1
(5) No. of Olefinic bond = 1
(4) No. of Acetylenic bond = 1
(5) No. of Olefinic bond = 1
(6) No. of Olefinic bond = 1

IUPAC Naming

1. Format of IUPAC


2. Selection of Principle Functional Group

-0-

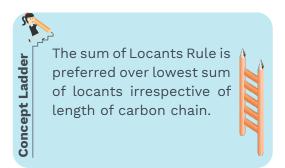
ether

If compound is having a single functional group, then it is considered as the principle functional group of that compound.

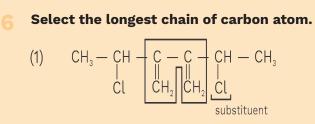
Exception :

nitro

halogen If compound having more than one functional group then select PFG according to given IUPAC series.


In this case rest of functional group behave as substituents & their prefix are used.

3. Selection of Principle C-chain (PCC)


If PFG having carbon then it considered as a first Carbon of PCC (except ketone).

If PFG not having carbon then consider that carbon which to PFG is directly attached. In this case that C-atom covered by both side of other C-atom. (including ketone)

Principle FG > Multiple bond (= or $^{\circ}$) > No. of C- atoms in PCC > No. of substituents

Q7
$$CH_3 - CH_2 = C - CH_3 - CH_3 - CH_3 = CH_3 - CH_3 - CH_3 - CH_3 = CH_3 =$$

A7

$$H_2$$
 H_2
 H_3
 H_2
 H_2
 H_3
 H_2
 H_2

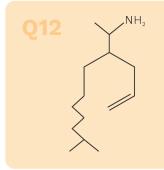
Q8 (3)
$$CH_2 = CH - C = CH_2$$

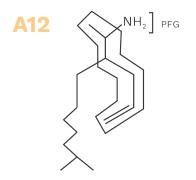
 $\downarrow CH_2 - OH$

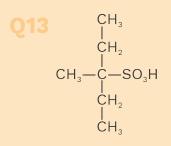
A8 (3)
$$\begin{array}{c} CH_2 = CH - C = CH_2 \\ CH_2 - OH \end{array}$$

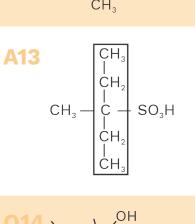
Q9 (4)
$$CH_2 = CH - C = CH_2$$

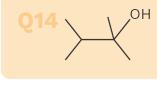
 $0 - CH_2 - CH_3$

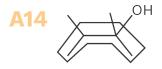

$$A9 \quad (4) \quad \boxed{CH_2 = CH - C = CH_2}_{O-CH_2-CH_3}$$

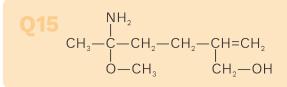

Q10 (5)
$$CH = C - CH_2$$
 O
| $CH_3 - CH_2 - CH - CH_2 -$

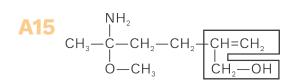

A10 (5)
$$\begin{array}{c} CH \equiv C - CH_2 & O \\ CH_3 - CH_2 - CH - CH_2 - CH_2 - CH_2 \end{array}$$

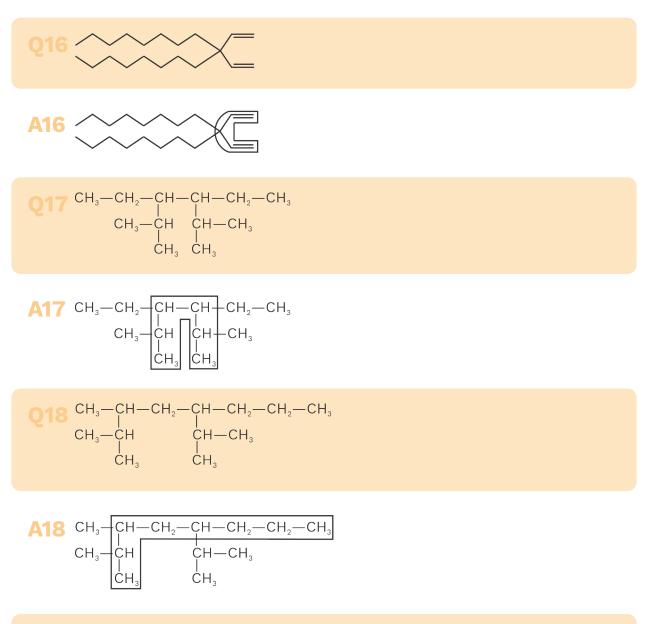

Q11
$$CH = CH - CH_2$$
 O
| | |
 $CH \equiv C - CH_2 - CH - CH_2 - C - NH_2$


A11
$$\begin{array}{c} CH = CH - CH_2 & O \\ H = C - CH_2 + CH - CH_2 - C - NH_2 \end{array}$$









$$\begin{array}{c} \mathbf{Q19} \quad \begin{array}{c} \mathbf{O} \\ \mathbf{H} \\ \mathbf{CH}_{3} - \mathbf{C} - \mathbf{O} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{2} - \mathbf{CH}_{3} \end{array}$$

A19
$$\bigcirc$$

 $CH_3 - C + O - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$

Q20
$$CH_{3}-CH-CH_{2}-CH_{2}-CH_{3}$$

 $C_{2}H_{5}$
A20 $CH_{3}-CH-CH_{2}-CH_{2}-CH_{3}$
 $L_{2}H_{5}$

4. Numbering in Selected PCC

If PFG having carbon then it considered as a first Carbon of PCC (except ketone).

PFG > Multiple (= or ^o) > Locant rule > Alphabetical order

Q21
$$CH_2 = CH - CH_2 - OCH_3$$

A21 $\dot{L}H_2 = \dot{C}H - \dot{C}H_2 - OCH_3$
Q22 $CH = CH - CH \bigvee_{NO_2}^{NO_2}$
A22 $\dot{L}H = \dot{C}H - CH \bigvee_{NO_2}^{NO_2}$
Q23 $CH = C - CH_2 - CH_2 - CH = CH - CH_3$
A23 $\dot{L}H = \dot{C} - \dot{C}H_2 - \dot{C}H_2 - \dot{C}H = CH - CH_3$
Q24 $CH = C - CH_2 - CH_2 - CH = CH_2$
A24 $\dot{C}H = \dot{C} - \dot{C}H_2 - \dot{C}H_2 - \dot{C}H = \dot{C}H_2$
(Symmetrical)

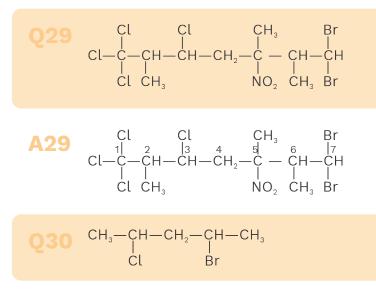
$$\begin{array}{c} \mathbf{Q25} \quad \mathbf{CH}_2 = \mathbf{C} - \mathbf{CH} - \mathbf{CH}_2 - \mathbf{CH} = \mathbf{CH}_2 \\ \mathbf{OH} \end{array}$$

A25
$${}^{1}_{CH_{2}} = {}^{2}_{C} - {}^{3}_{CH} - {}^{4}_{CH_{2}} - {}^{5}_{CH} = {}^{6}_{CH_{2}}$$

Q26 $CH = C-CH = CH-CH_{2}-CH_{3}$

A26
$${}^{1}_{CH} \equiv {}^{2}_{C} - {}^{3}_{CH} = {}^{4}_{CH} - {}^{5}_{CH_{2}} - {}^{6}_{CH_{3}}$$

(Unsymmetrical)

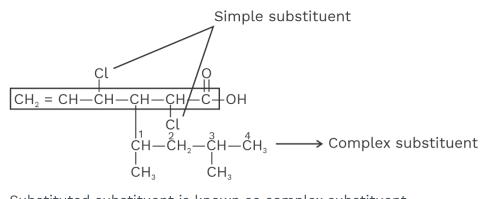

Q27

$$CH_3-C \equiv C-C$$

 $CH_3-CH = CH_2-CH_3$

A27
$${}^{7}_{CH_{3}} - {}^{6}_{C} \equiv {}^{5}_{C} - {}^{4}_{C}$$
$${}^{1}_{CH_{3}} - {}^{6}_{C} \equiv {}^{5}_{C} - {}^{1}_{C}$$
$${}^{1}_{CH_{3}} = {}^{2}_{C} + {}^{1}_{2} - {}^{1}_{C} + {}^{3}_{3}$$

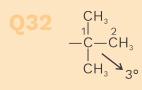
$$\begin{array}{c} \mathbf{Q28} \quad \mathbf{CH}_2 = \mathbf{CH} - \mathbf{CH} - \mathbf{C} \equiv \mathbf{CH} \\ \\ \mathbf{OH} \\ \end{array}$$


A28
$$\overset{1}{C}H_{2} = \overset{2}{C}H - \overset{3}{C}H - \overset{4}{C} = \overset{5}{C}H$$

A30
$$\overset{5}{C}H_{3} - \overset{4}{C}H - \overset{3}{C}H_{2} - \overset{2}{C}H - \overset{1}{C}H_{3}$$

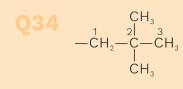
 $\overset{1}{C}l$ Br

5. Use of numerical prefix


di, tri is used for simple substituents. bis, tris, tetrakis used for complex substituents.

Substituted substituent is known as complex substituent.

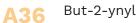
Q31 Write the IUPAC name of complex substituent. $-\overset{1}{C}H-\overset{2}{C}H_{2}-\overset{3}{C}H_{3}$ $\overset{1}{C}H_{3}-\overset{2}{2}\circ$


1-Methyl propyl or sec-butyl

A32 1-dimethyl ethyl or tert-butyl

Q33
$$-\overset{1}{C}H_2-\overset{2}{\overset{C}{C}H}-\overset{3}{\overset{C}{C}H_3}$$

A33 2-Methyl propyl or iso-butyl



A34 2,2-dimethyl propyl or neo-pentyl

Q35
$$-CH_{2} - CC_{1}^{2} = CH_{2}$$

A35 2-Methyl-prop-2-enyl

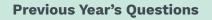
Q36
$$-CH_{2}^{1} + CC = CC^{3} + CH_{3}^{4}$$

Q37
$$-\overset{1}{C}H_{2}-\overset{2}{C}H = \overset{3}{C}H-\overset{2}{C}H_{2}$$

4-Amino-but-2-enyl **A37**

NCERT PrepUp 12.7 (Pg. 343)

Structures and IUPAC names of some hydrocarbons are given below. Explain why the names given in the parentheses are incorrect.


(a) $CH_3 - CH - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ (b) $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ CH₂CH₃ CH₃ CH, CH, ĊΗ 2,5,6 – Trimethyloctane

[and not 3,4,7-Trimethyloctane]

3-Ethyl-5-methylheptane [and not 5-Ethyl-3-methylheptane]

Solution

- (a) Lowest locant number, 2,5,6 is lower than 3,5,7,
- (b) substituents are in equivalent position; lower number is given to the one that comes first in the name according to alphabetical order.

Previous Year Question's

The structure of isobutyl group in an organic compound is

[NEET-2013]

(1)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

(2)
$$CH_3 - CH_3 - CH_$$

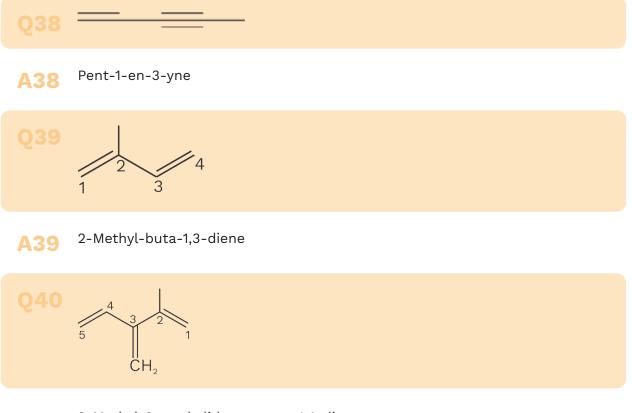
$$(4) \quad \mathsf{CH}_3 - \underset{|}{\mathsf{CH}} - \mathsf{CH}_2 - \mathsf{CH}_3$$

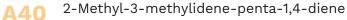
MIC (Methyl Isocyanate) is extremely poisonous gas, which related to Bhopal Gas tragedy in 1984.

29.

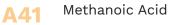
Rack your Brain

Concept Ladder

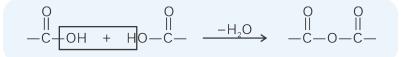

Why sp-hybridization is more electronegative as compared to sp² and sp³-hybridization?


6. Alphabetical order of Substituents In case of simple substituents :

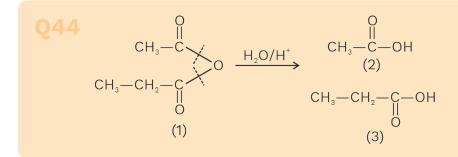
Cyclo, iso, neo are considered in alphabetical order rest all like di, tri, sec, tert are avoided.


In case of complex substituent :

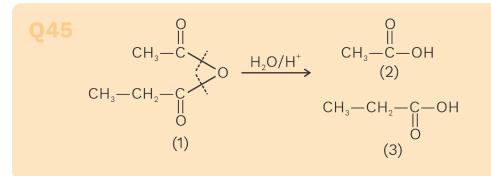

First alphabet decide alphabetical order.

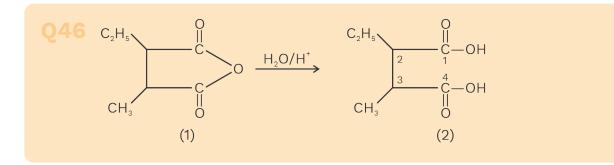

Ethan-3,2-dioic acid [Oxalic acid]

Propane-1,2,3-tricarboxylic acid


• Special Rule

F.G.	SUFFIX
—СООН	Carboxylic acid
-SO3H	Sulphonic acid
-COOR	Alkyl carboxylate
-cox	Carboxyl halide
-CONH ₂	Carboxamide
—C⁰N	Carbonitrile
—СНО	Carbaldehyde

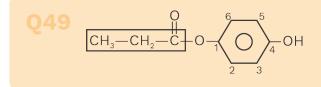

7. IUPAC name of Anhydride


IUPAC of Anhydrides always given w.r.t. their respective acids & follow alphabetical order rule.

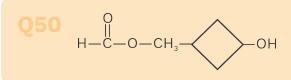
- **A44** (1) Ethanaoic-Propanoic anhydride
 - (2) Ethanoic acid
 - (3) Propanoic acid

- A45 (1) Methanoic anhydride
 - (2) Ethanoic acid
 - (3) Propanoic acid

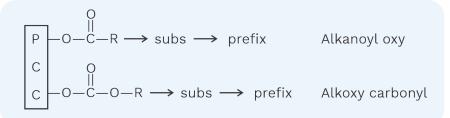

(1) 2-Ethyl-3-methyl-butan-1,4-dioic anhydride(2) 2-Ethyl-3-methyl-but-1,4-dioic acid


8. IUPAC name of ester

$$\begin{array}{c} O \\ \parallel \\ -C \end{array} \xrightarrow{O} \\ OH \end{array} + H - O - R \xrightarrow{-H_2O} \begin{array}{c} O \\ \parallel \\ -C - O - R \end{array}$$



Methyl ethanoate

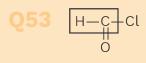


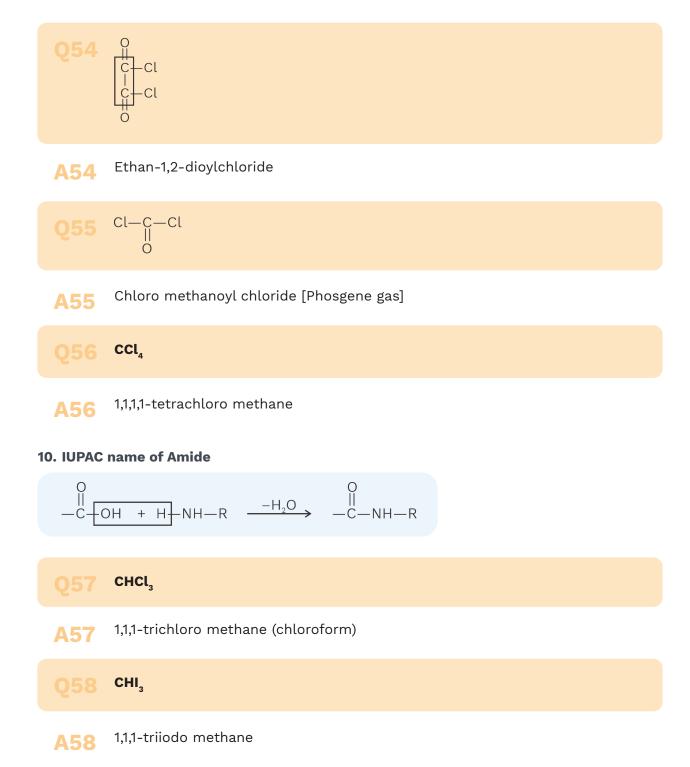
A49 4-Hydroxy-phenyl-propanote

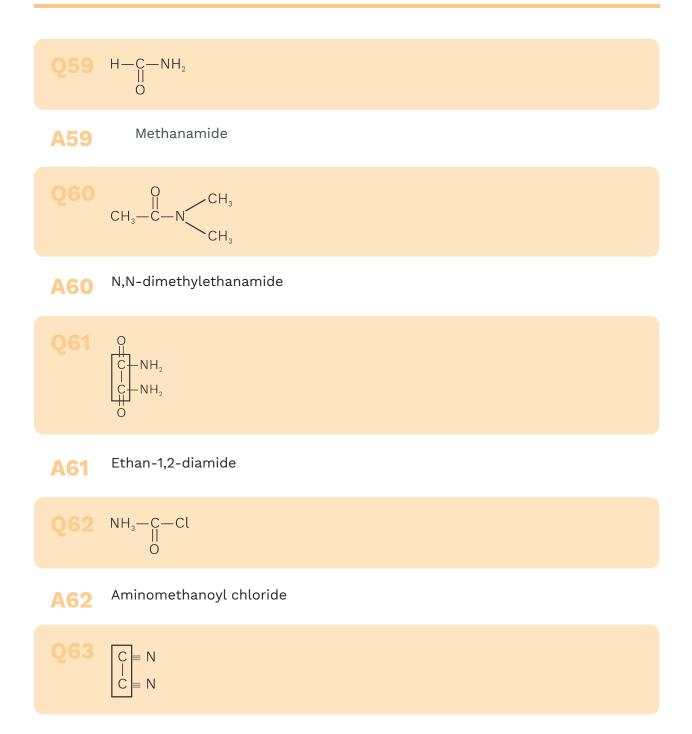
A50 4-Hydroxy cyclobutylmethyl Methanoate

9. Ester as a Substituent

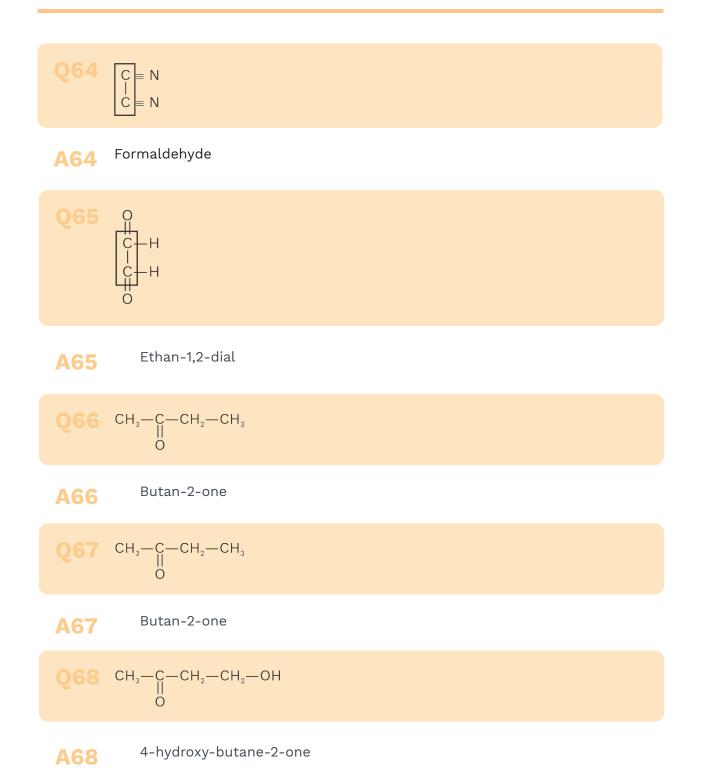
Q51
$$\begin{array}{c} O \\ \parallel \\ HO-C-CH = CH-CH-CH_2-CH_2-C-OH \\ \downarrow \\ C-O-CH_2-CH_3 \\ \parallel \\ O \end{array}$$

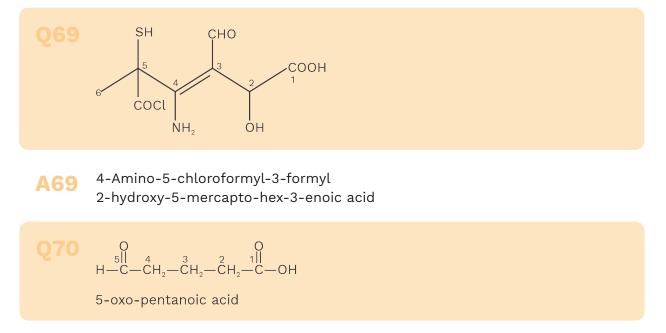

A51

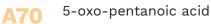

4-Ethoxy-carbonyl-hept-2-en-1,7-dioic acid

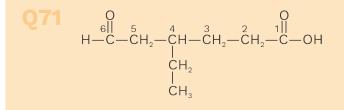

Q52
$$\bigcup_{HO-C_{1}-CH}^{O} = CH-CH_{3} = CH-CH_{6} = CH-C_{7} = OH_{3}$$

A52⁴

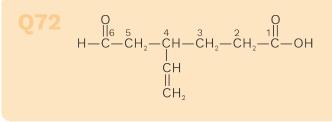

4-Ethoxy-oxy-hepta-2,5-diene-1,7-dioic acid







Nomenclature



Special case for aldehyde & ketone

A71 4-Ethyl-6-oxo-hexan-1-oic acid

$$Q73$$
 $CH_3 - CH_2 - CH_2 - 0 - CH_3$

A73

1-Methoxy propane

11. Naming of Ether

Ether can never be PFG. It always behaves as a substituent & alkoxy prefix is used. **Note :** All ethers are polar aprotic solvent

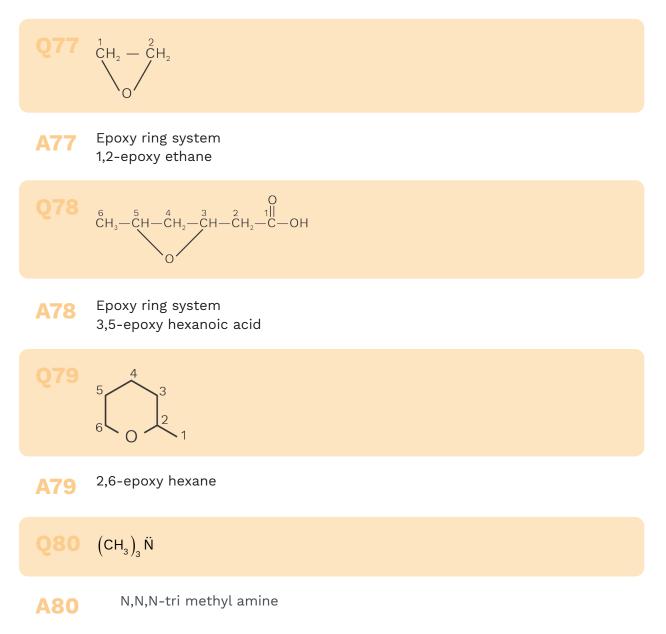
R-O-R

Q74

$$CH_3 - CH_2 - CH_2 - CH_3$$

 OCH_3

2-Methoxy-2-methyl pentane


$$\begin{array}{c} \mathbf{Q75} \quad \mathbf{CH} = \mathbf{CH} - \mathbf{OC}_{2}\mathbf{H}_{5} \\ \overset{|}{\mathbf{Br}} \end{array}$$

A75 1-Bromo-2-ethoxy ethene

$$\begin{array}{c} \mathbf{Q76} \quad \mathbf{CH} = \mathbf{CH} - \mathbf{OC}_{2}\mathbf{H}_{5} \\ \mathbf{Br} \end{array}$$

12. IUPAC name of cyclic ether

In case of cyclic ether to give IUPAC name compound heated as a open chain compound & this case epoxy prefix used.

Q81
$${}^{4}_{C}H_{3} - {}^{3}_{C}H_{2} - {}^{2}_{C}H - {}^{1}_{C}H_{2} - NH - C_{2}H_{5}$$

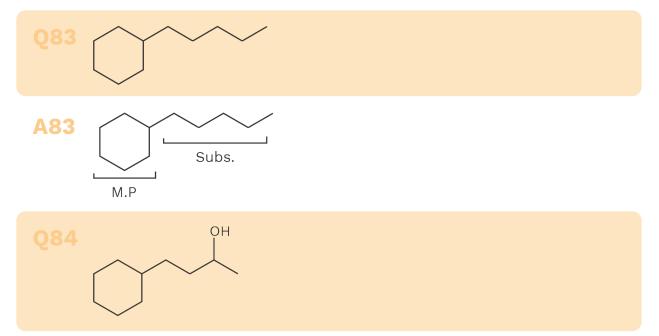
A81 N-Ethyl-2-Methoxy-butan-1-amine

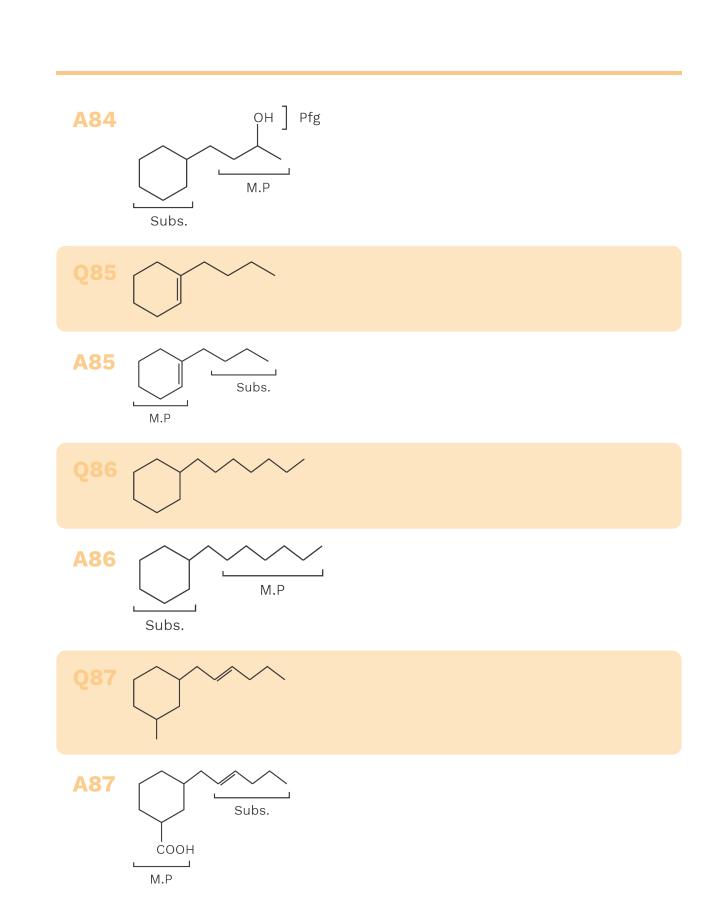
13. IUPAC name of Isocyanide

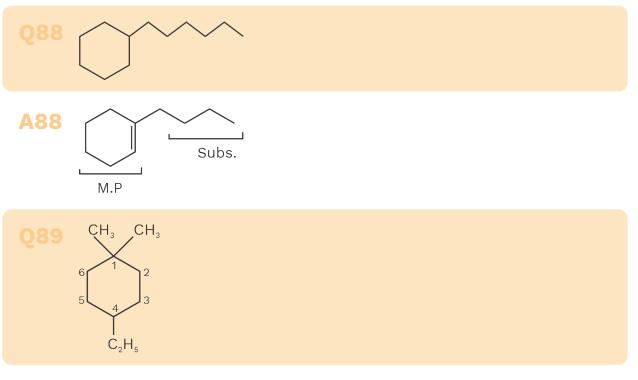
In case of isocyanide even C-atom present in isocyanide, still we select PCC assuming that there is no carbon in it.

$$\begin{array}{c} \textbf{Q82} \quad \overset{3}{C}\textbf{H}_{3} - \overset{2}{\overset{1}{C}}\textbf{H} - \overset{1}{\overset{1}{C}}\textbf{H}_{3} \\ & \overset{1}{N} \stackrel{1}{=} \textbf{C} \end{array}$$

A82


Propan-2-isonitrile (old system) 2-carbylamino propane (new system)

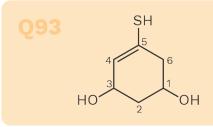

IUPAC name of Cyclic compounds


Rule 1 : If given compound is combination of open & closed chain hydrocarbon part then their principal part is selected according to given IUPAC series.

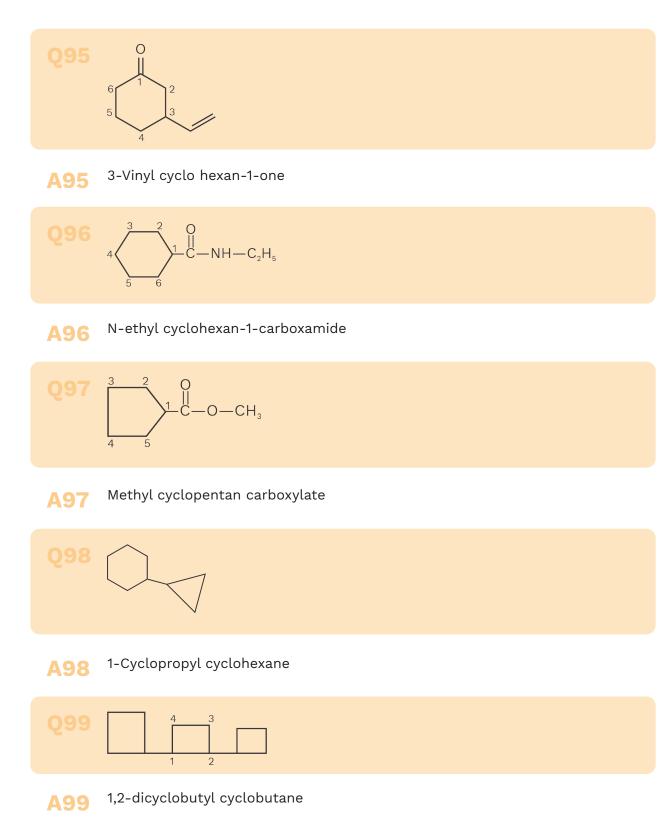
If C-atom equal same-same

[PFG > M.B. > No. of C-atoms in PCC > Ring]

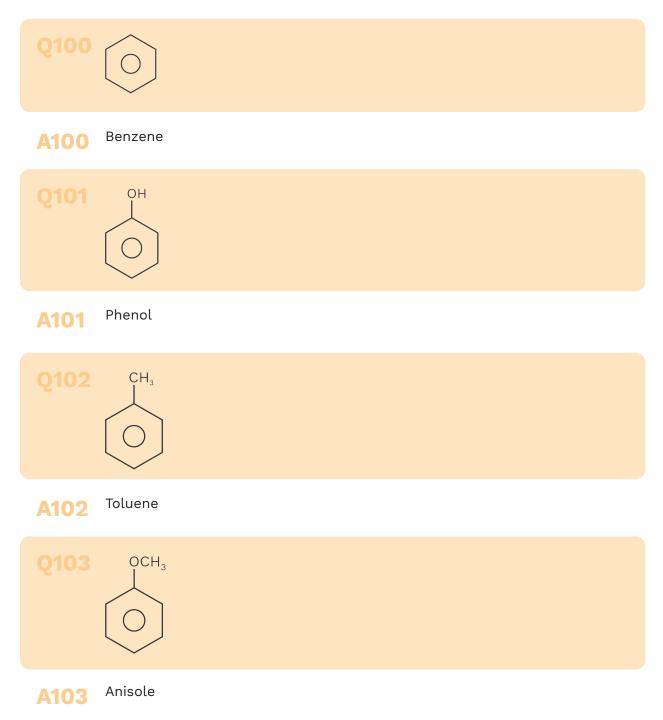
A89 4-Ethyl-1,1-dimethyl cyclohexane

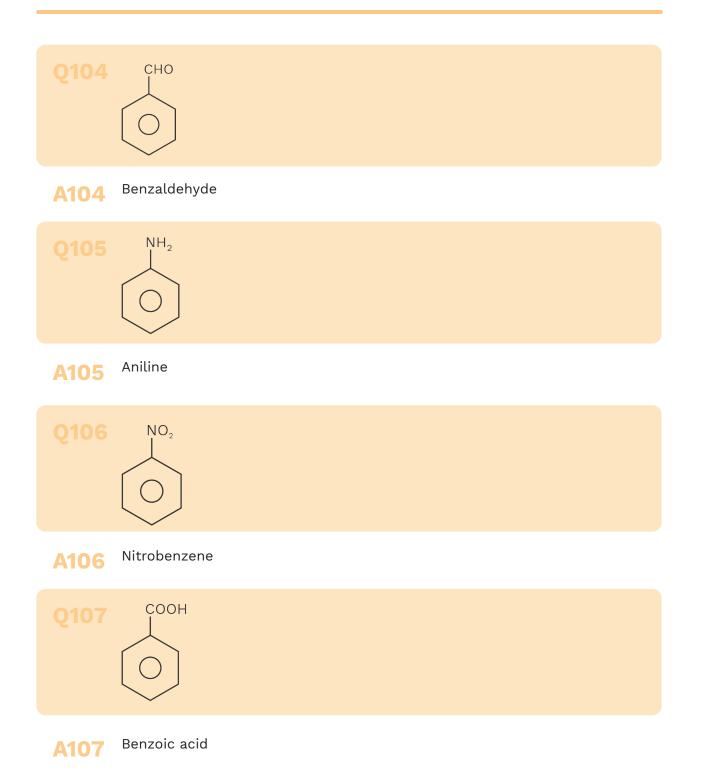

Rule 2 : If PFC directly attached to C-atom of ring then it is considered as a part of ring, not a separate part, but in case of ketone, it may present inside a ring. In case of cyclic compound 'cyclic' prefix used.

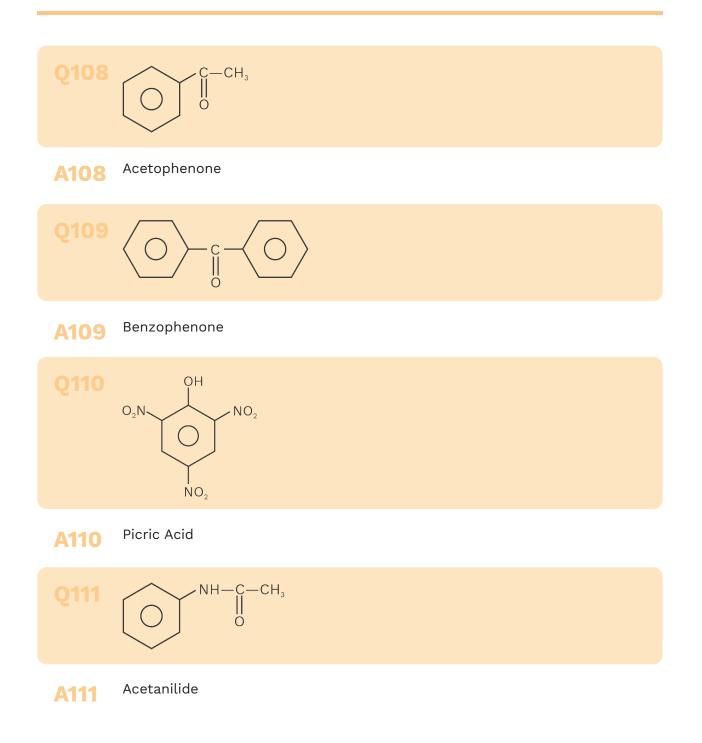
43.

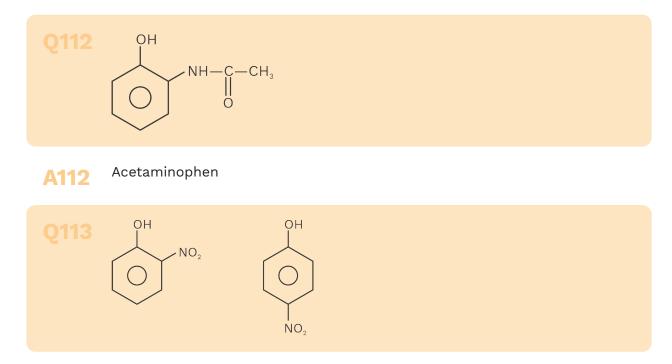

A92 1-Bromo-4-chloro cyclobut-1,3-diene

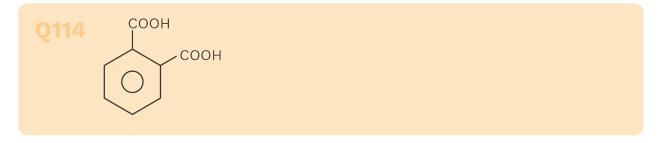
A93 5-Mercapto cyclohex-4-ene-1,3-diol

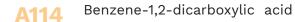


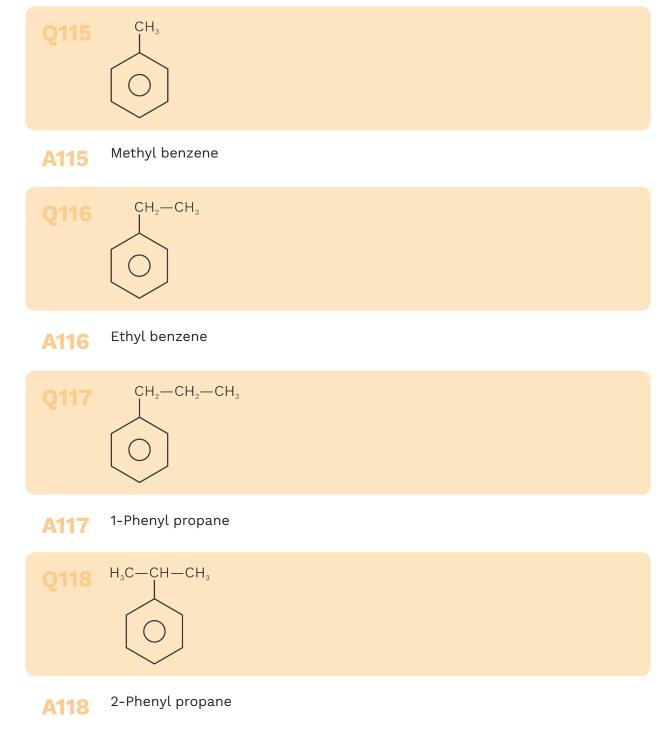

A94 5-Mercapto cyclohex-3-ene-1,3-diol


IUPAC name of Aromatic Compound


Rule 1: Common name of some compounds has been written in IUPAC system.

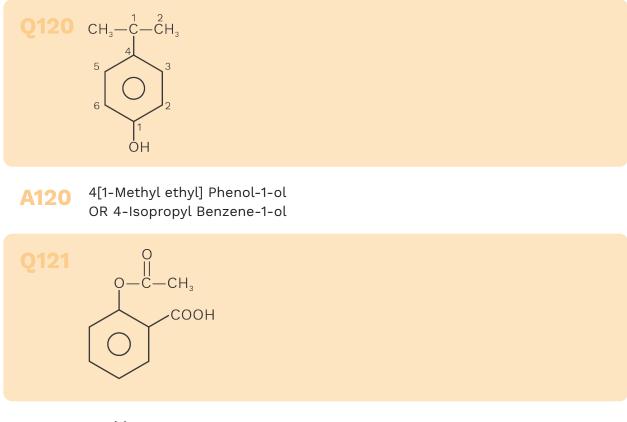

Nomenclature




A113 O-nitrophenol, p-nitrophenol Hint : Separation by steam distillation method

Rule 2 : If more than one principle functional group are present then suffix is used according to IUPAC rule.

Rule 3 : If given compound is combination of open chain & closed chain hydrocarbon part then except ethyl & methyl benzene open chain part is considered as main part. In this case benzene behaves as a substituent & phenyl propene used.



Nomenclature

A119 1-Chloro-1-phenyl methane

Rule 4: If any part having functional group then it is considered as main part.

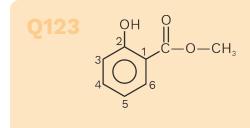


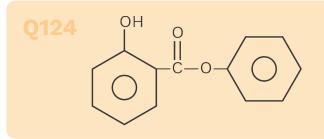
A121 Aspirin Acetyl Salicylic acid (Chemical name) Or 2-Ethanoyl-oxy-benzene carboxylic acids

Use of Aspirin

(i) Analgesic (pain)(ii) Antipyretic(iii) Anti coagulation(iv) Anti inflammatory

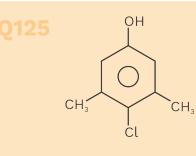
Aspirin Paracetamol alcohol addicts should not used it (causes peptic ulcers)



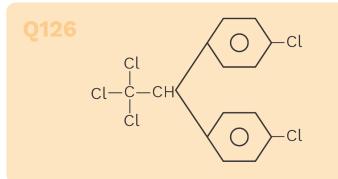

Paracetamol (PCM) N-(4-hydroxyphenyl) ethanamide

Use of Paracetamol :

- (i) Analgesic
- (ii) Antipyretic
- (iii) Anti inflammatory



A123 Methyl salicylate (Oil of winter green) Use — Joint pain Methyl-2-hydroxy benzene carboxylate



Use — Antiseptic Action — Astrigent Phenyl-2-hydroxy benzene carboxylate

Salol

A125 Chloroxylenol Dettol — Chloroxylenol + Terpinol Use — Antiseptic 4-Chloro-3,5-dimethyl benzen-1-ol

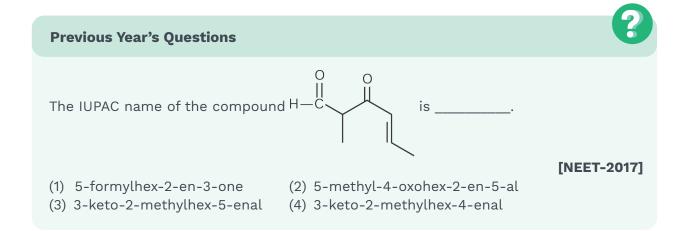
DDT Non-biodegradable 1,1,1,-Trichloro-2,2-Bis[4-chlorophenyl]ethane

NCERT PrepUp 12.8 (Pg. 344)

Write the IUPAC names of the compounds i-iv from their given structures.

(i)
$$CH_{3} - CH_{2} - CH_{3}$$

(ii) $CH_{3} - CH_{2} - CH_{2} - CH_{3} -$

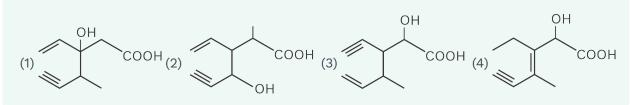

Solution

(i)

- The functional group present is an alcohol (OH). Hence the suffix is '-ol'.
- The longest chain containing -OH has eight carbon atoms. Hence the corresponding saturated hydrocarbon is octane.
- The -OH is on carbon atom 3. In addition, a methyl group is attached at 6th carbon.

Hence, the systematic name of this compound is 6-Methyloctan-3-ol.

- (ii) Hexane-2,4-dione
- (iii) 5-Oxo-hexanoic acid
- (iv) Hex-1-en-5-yne



Previous Year's Questions

Structure of the compound whose IUPAC name is 3-ethyl-2-hydroxy-4-methylhex-3en-5-ynoic acid is

[NEET-2013]

[NEET-2012]

Previous Year's Questions

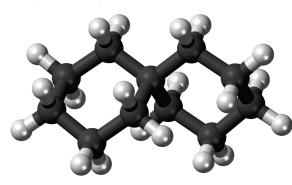
Which nomenclature is not according to IUPAC system?

(1) $Br - CH_2 - CH = CH_2$ 1-Bromoprop-2-ene

(2)
$$CH_3 - CH_2 - CH_3 - CH_2 - CHCH_3$$

Br $CH_2 - CH_2 - CHCH_3$

 $(3) CH_3 - CH - CH - CH_2 CH_3$


2-Methyl-3-phenylpentane

Bicyclo Compounds

Bicyclo [4.2.0] octane

5-Oxohexanoic acid

• Spiro Compounds

Spiro [5.5] decane

Chaapter Summary

- A carbon atom can share 4 electrons with other carbons & can form multiple bond. The bonds formed are single, double and triple by sharing of 2, 4 & 6 electrons respectively.
- Priority order of functional group :
- IUPAC name = sec. prefix + primary prefix + word root + primary suffix + sec. suffix.
- IUPAC system of nomenclature is valid for various types of organic compounds such as : Complex branched chain, cyclic compound, polyfunctional groups compounds, bicyclo and spiro compounds.
- If a hydrocarbon has both double and triple bond, it is named as alkyne. While numbering of double bond is preferred over triple bond.
- If more than two carbon containing functional groups are directly attached to unbranched alkane then that carbon chain is considered as principle carbon chain and we use special 2° suffix.
- When two similar functional groups are present at the ends of chain, then carbon of both functional groups is counted in chain.
- When two different carbon containing functional groups are present at the ends of carbon chain, only one carbon atom of principal functional groups is considered in parent chain.
- If two atoms or group of atoms of same priority occupy identical positions from either end of the parent chain, the lower number must be given to atom/group which comes first in alphabetic order.
- Bicyclo compounds contain two fused or infused rings.
- Spiro compounds contain one common carbon.