s-Block Elements

Alkali Metals; Group -1 Elements

• The group 1 elements have ns¹ electronic configuration and are highly reactive metals.

Elements	Symbols	Atomic Number	Electronic Configuration
Lithium	Li	3	[He]2s ¹
Sodium	Na	11	[Ne]3s ¹
Potassium	К	19	[Ar]4s ¹
Rubidium	Rb	37	[Kr]5s ¹
Caesium	Cs	55	[Xe]6s ¹
Francium	Fr	87	[Rn]7s ¹

Physical Properties of Alkali Metals :

1. Atomic Size

Largest in their respective period (except noble gas element)

Size increases from Li to Cs due to addition of an extra shell

Cs > Rb > K > Ba > Sr > Ca > Na > Mg > Li > Be

Comparision of atomic size of Group 1 and 2

Francium occurs only in trances as a radioactive decay product because its half life period is very small (half-life 21 minutes).

2. Oxidation State

The group 1 elements exhibit +1 oxidation state

3. Ionization Energy

- The value of first ionization energies for the atoms in this group are lower than those for any other group in the whole periodic table. (Li > Na > K > Rb > Cs)
- Second ionization energy of alkali metals is very high because by loosing one electron they achieve inert gas configuration.
- Li > Na > K > Rb > Cs (Ionization energy)
- 4. Density

Alkali metals have large size which accounts

for their low density Density = $\frac{\text{Atomic Mass (M)}}{\text{Atomic Volume(V)}}$

Atomic mass increases from Li to Cs in the group and volume also increases but increase in atomic weight is more than increase in volume. Therefore density increases from Li to Cs.

Li < K < Na < Rb < Cs

5. Melting and Boiling point

M.P. and B.P. of alkali metals are low due to weak interatomic bonds because of their large atomic radii and presence of only 1 valence electron. (Li > Na > K > Rb > Cs)

6. Electropositive Character

Electropositivity ∝ Ionization Energy

Alkali metals have the tendency to lose the electron.

 $M_{(g)} \longrightarrow M_{(g)}^{+} + e^{-}$

7. Conductivity

Due to the presence of loosely held valence electrons which are free to move in a metal structure, these elements are good conductor of heat and electricity.

Rack your Brain

Why second ionization enthalpy values of alkali metals are very high?

Concept Ladder

Alkali metals have largest size and lowest ionization energies in their respective periods.

Rack your Brain

Why density of K is less than Na?

8. Nature of Bonds

The electronegativity values being low, they combine with other elements to form ionic bond.

9. Flame Test

First group elements and their salts gives characteristic color to Bunsen flame. By flame energy electron of outer most shell get excited, which on returning back to its ground state releases absorbed flame energy as a visible light.

The energy released is min. in the case of Li^+ and increases in order Li^+ , Na^+ , K^+ , Rb^+ , Cs^+ .

Elements	Colour
Li	Crimson red
Na	Golden Yellow
К	Violet
Rb	Red Violet
Cs	Blue

Concept Ladder

Alkali metals are soft with low melting and boiling points. This is due to weak metallic bond.

Solution of alkali metals in liquid ammonia is highly conductive and deep blue in colour. This is due to presence of ammoniated electrons.

10. Electronegativity

The tendency to attract elements is low as the alkali metals are electropositive. The electronetativity, thus decreases from Li to Cs as the electropositive character increases.

11. Specific Heat

The specific heat values decrease from Li to Cs.

12. Heat of Atomisation

Heat of atomisation decreases from Li to Cs.

13. Hydration of lons

The ions are heavily hydrated. The smaller the size of the ion, the greater is the degree of hydration. Thus the degree of hydration decreases down the group from Li⁺ to Cs⁺. Thus with the increase in hydration electrical conductivity decreases.

14. Lattice Energy

Salts of alkali metals are ionic solids. Lattice energy of salts of alkali metals having common anion decreases on descending down the group.

15. Photoelectric Effect

K, Rb and Cs have quite large atomic size, so their ionization energy is very low.

Due to very low ionization energy their valence shell electrons gets excited even by absorbing visible light.

That's why Cs is used in photoelectric cells.

16. Reducing Character

Alkali metals are strong reducing agents. Reducing character increases down the group.

Why, LiHCO₃ exists in solution?

The sequence of ionic mobility in aqueous solution is

[AIPMT-2008]

- (1) $Rb^+ > K^+ > Cs^+ > Na^+$
- (2) Na⁺ > K⁺ > Rb⁺ > Cs⁺
- (3) K⁺ > Na⁺ > Rb⁺ > Cs⁺
- (4) $Cs^+ > Rb^+ > K^+ > Na^+$

O.1 Alkali metals are paramagnetic but their salt are diamagnetic. Why?

A.1 In metals, the outermost energy shell is singly occupied but in cations, all the orbitals are doubly occupied (inert gas contiguration).

Chemical Properties

Reaction	Comment	Why NaHCO, and NaOH can't		
$2M + 2H_2O \rightarrow 2MOH + H_2$	Hydroxides are strongest base known	exist together?		
$4Li + O_2 \rightarrow 2Li_2O$	Monoxide formed by Li and to a small extent by Na			
$2Na + O_2 \rightarrow Na_2O_2$	Na and small extent by Li form their peroxide ion.	Concept Ladder		
$K + O_2 \rightarrow KO_2$	Superoxide formed by K, Rb, Cs.	Lithium) show photoelectric effect. This tendency is maximum for caesium.		
$2M + H_2 \rightarrow 2MH$	Ionic salt like hydrides	H		
$6 \text{Li} + \text{N}_2 \rightarrow 2 \text{Li}_3 \text{N}$	Nitride formed only by Li			
$2M + S \rightarrow M_{_2}S$	All metals form sulphides	Rack your Brain		
$2M + X_2 \rightarrow 2MX$	All the metals form halides	Why Li can't be store in Kerosene?		
$2M + 2NH_3 \rightarrow 2MNH_2 + H_2$	All the metals form amides			

Reactivity

These elements are very reactive, so do not found in free state in nature.

 $^{\infty}$ $\frac{}{}$ Ionization Potential

1

Order of reactivity – Li < Na < K < Rb < Cs

• They have low values of ionisation energies and readily lose their valence electron to form M⁺ ion.

Rack your Brain

Previous Year's Questions

Which one of the alkali metals, forms only the normal oxide, M₂O on heating in air

	[AIPMT-2012]
(1) Rb	(2) K
(3) Li	(4) Na

- They have low heat of atomisation and easily come into vaporised form.
- They have higher heats of hydration.

Reactivity towards air

Alkali metals gets tarnish in air due to the formation of oxide at their surface hence they are kept in kerosene or paraffine wax. Alkali metals when reacts with moist air form carbonates.

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$ $Na_{2}O + H_{2}O \longrightarrow 2NaOH$ (moist) $2 \text{NaOH} + \text{CO}_2 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{H}_2 \text{O}_3$ (in air)

Reactivity towards oxygen

 $M \xrightarrow{O_2} M_2O \xrightarrow{H_2O} MOH \xrightarrow{CO_2} M_2CO_3$ Alkali Oxide Hydroxide Carbonate metals M_2O_2 Peroxide

O²⁻ Oxide ion $[-0-0-]^2$ $[\ddot{0} \leftrightarrow \ddot{0};]$ Peroxide ion

Normal oxides – Monoxide

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

Peroxides

 $2Na + O_2(excess) \longrightarrow Na_2O_2$

Superoxides

Superoxides are ionic oxides M⁺O₂⁻

$$M + O_2(excess) \rightarrow MO_2$$

Concept Ladder

Exception : Lithium is strongest reducing agent due to its highest hydration energy.

Why alkali metals are highly reactive in air?

Concept Ladder

Alkali metal superoxides have unpaired electron and hence are paramagnetic whereas oxides and peroxide are diamagnetic and colourless.

Superoxides are stronger oxidizing agents than peroxides.

The stability of these superoxides is in the order :

 $KO_2 < RbO_2 < CsO_2$

Stability of Oxides : Normal oxide > Peroxide > Superoxide

Reaction with Hydrogen

Alkali metals combine with $\rm H_{_2}$ forming ionic hydrides

$$2M + H_2 \rightarrow 2MH$$

Hydrides of alkali metals are attacked by water to give back hydrogen

 $MH + H_2O \rightarrow MOH + H_2$

Thermal stability : LiH > NaH > KH > RbH > CsH

Basic property : CsH > RbH > KH > NaH > LiH

Reaction with Water

Alkali metals react vigorously with H_2O forming hydroxides with the liberation of H_2 .

 $2M + 2H_2O \rightarrow 2MOH + H_2$

Reactivity with water increase form Li to Cs.

- Li \rightarrow least reactive towards water
- Na \rightarrow reacts vigorously
- $K \rightarrow$ reacts producing a flame
- Rb, Cs \rightarrow reacts explosively

Monoxides gives strongly alkaline solution with water

 $M_2O + H_2O \rightarrow 2MOH$

Reaction with dilute acids

Due to alkaline nature, these metals react rapidly with dilute acids and the rate of reaction increases form Li to Cs because of increase in basic character.

Rack your Brain

What is the reason for the increasing stability of peroxides and superoxides of alkali metals down the group?

 $\mathsf{MH} + \mathsf{H}_{2}\mathsf{O} \rightarrow \mathsf{MOH} + \mathsf{H}_{2} \uparrow$

The alkali metals form salt-like hydrides by the direct synthesis at elevated temperature. The thermal stability of these hydrides decreases in which of the following orders

[AIPMT-2008]

- (1) NaH > LiH > KH > RbH > CsH
- (2) LiH > NaH > KH > RbH > CsH
- (3) CsH > RbH > KH > NaH > LiH
- (4) KH > NaH > LiH > CsH > RbH

Carbonates and Bicarbonates

(a) Small size and strong polarisation of Li distorts the e⁻ cloud of the near by oxygen atom of the large CO₃^{2−} to such an extent that the C−O bond gets weakened.

$$Li_2CO_3 \xrightarrow{\Delta} Li_2O + CO_2$$

(b) Replacement of the larger carbonate ion by a smaller ion leads to increased lattice energy and thus favours the decomposition.

$$M_2CO_3 \longrightarrow M_2O + CO_2 \uparrow$$

Halides

All the metals in this group form halides of type MX. Li⁺ is the smallest ion among alkali metals, it would be expected to form hydrated salts more readily than other metals.

Properties :

As evident from their following properties, alkali metal halides are ideal ionic compounds.

- (i) All alkali halides except lithium fluoride are freely soluble in water (LiF is soluble in nonpolar solvents).
- (ii) They have high melting and boiling points.
 For the same alkali metal, the melting and boiling points decrease regularly in the order: Fluoride > chloride > bromide > iodide.

Stability and solubility of carbonates, bicarbonates and nitrates increases down for group 1 elements.

Rack your Brain

Amongst LiF and LiI which has more covalent character and Why?

2 LiBr has lower melting point than LiF. Why?

A.2 Br⁻ ion, on account of bigger size than F⁻ ion, is more polarisable than F⁻ ion, is more polarisable than F⁻ ion. Hence, LiBr is more covalent than LiF and thus, it has lower melting point.

Sodium :

- (a) **Ores** : -
- Chile salt peter NaNO₃
- Rock salt NaCl
- Glauber's salt Na₂SO₄. 10H₂O

Extraction of sodium :

• Na is obtained on large scale by 2 processes.

Castner's process :

 In this process, electrolysis of fused NaOH is carried out at 330°C using iron as cathode and nickel as anode.

 $2NaOH \implies 2Na^+ + 2OH^-$

In which of the following processes, fused sodium hydroxide is electrolysed at 330°C temperature for extraction of sodium?

[AIPMT]

- (1) Castner's process
- (2) Down's process
- (3) Cyanide process
- (4) Both (2) and (3)

At cathode : $2Na^+ + 2e^- \rightarrow 2Na$ At anode : $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$

 During electrolysis, O₂ and H₂O are produced. H₂O formed at the anode gets partly evaporated and is partly broken down and H₂ is discharged at cathode.

$$H_{2}O \iff H^{+} + OH^{-}$$

At cathode : $2H^+ + 2e^- \rightarrow 2H \rightarrow H_2$

Down's process :

It involves the electrolysis of fused NaCl containing CaCl₂ and KF, using iron as cathode and graphite as anode, at about 600°C.

In Down's process Na is obtained by electrolysis of a mixture of NaCl (40%) and CaCl₂ (60%) in fused state.

Rack your Brain

In Down's process which gas is liberated at cathode side?

Reactions : NaCl \implies Na⁺ + Cl⁻ **At cathode :** $2Na^+ + 2e^- \rightarrow 2Na$ **At anode :** $2Cl^- \rightarrow Cl_2 + 2e^-$ Na obtained by this method is 99.5% pure.

- (i) The fusion temperature of NaCl is high, i.e., 803°C (1076 K) which is difficult to maintain.
- (ii) Sodium is volatile at this temperature and therefore, a part of it vapourises and forms a metallic fog.
- (iii) At this temperature, the products of electrolysis, sodium and chlorine are corrosive and may attack the material of the cell.
- To remove the above difficulties, pure sodium chloride is mixed with calcium chloride and potassium fluoride.

Sodium Hydroxide (Caustic Soda)

Methods involving sodium carbonate as a starting material

Causticing process (or **Gossage process**) Na₂CO₃+Ca(OH)₂ \rightarrow CaCO₃ \downarrow + 2 NaOH

Methods involving sodium chloride as a starting material

Electrolytic process : Electrolysis of aq. NaCl

 $2NaCl + 2H_2O \longrightarrow 2NaOH + H_2 + Cl_2$

Four methods are used in electrolysis of NaCl

- (i) Porous diaphragm process (Nelson cell process)
- (ii) Castner-Kellner cell
- (iii) Solvay-Kellner cell
- (iv) Diaphragm cell

Porous diaphragm process (Nelson cell process)

Nelson cell consist of a perforated steel tube lined inside with asbestos. The tube acts as a cathode.

NaCl \longrightarrow Na⁺ + Cl⁻

Concept Ladder

In Down's process Na metal obtained is about 99% pure. Cl_2 is by product of this process.

Name the two important processes used to extract sodium metal?

Previous Year's Questions

Which of the following is known as fusion mixture?

[AIPMT]

(1) Mixture of Na₂CO₃ + NaHCO₃

- (2) Na₂CO₃.10H₂O
- (3) Mixture of $K_2CO_3 + Na_2CO_3$
- (4) NaHCO₃

At cathode: $2H_2O + 2e^- \iff H_2 + 2OH^-$ Na⁺ + OH⁻ \iff NaOH

At anode:

 $Na^+ + OH^- \iff NaOH$ $2Cl^- \iff Cl_2 + 2e^-$

The sodium containing NaOH and NaCl as impurity is taken out and evaporated to dryness.

Concept Ladder

Nelson cell is used for the industrial production of Cl_2 . As well as this cell can be used for the production of Na_2CO_3 , for which CO_2 is mixed with steam.

Rack your Brain

Name the element which when heated with NaOH reduces it metal? Castner-Kellner cell :

NaCl — Na⁺ + Cl⁻

At anode :

 $2Cl^{-} \longrightarrow 2Cl + 2e^{-} \longrightarrow Cl_{2}$

At cathode :

Na⁺ + e⁻ → Na

Na + Hg — Amalgam

 The sodium amalgam thus formed comes in the inner compartment due to rocking. Here, the sodium amalgam acts as the anode and ions rods act as cathode.

At anode :

Na-amalgam → Na⁺ + Hg + e⁻

At cathode :

2H₂O + 2e⁻ → 2OH⁻ + H₂

 The concentrated solution of sodium hydroxide (about 20%) is taken out from inner compartment and evaporated to dryness to get solid NaOH.

Solvay-Kellner cell :

At anode :

2Cl⁻ ---- ► Cl₂ + 2e

At cathode :

2Na + 2Hg + 2e → 2Na . Hg

Sodium – amalgam

• The amalgam flows out in a vessel containing water. Sodium hydroxide is formed with evolution of hydrogen.

 $2Na-Hg + 2H_2O \longrightarrow 2NaOH + 2Hg + H_2$

Concept Ladder

In Castner-Kellner cell sodium amalgam is removed from the cell. It is then decomposed in a separate cell by water giving NaOH, hydrogen & Hg. Then Hg is recirculated to the cell.

In Castner-Kellner cell for production of sodium hydroxide

[NEET-2013]

- (1) Brine is electrolyzed using graphite electrodes
- (2) Molten sodium chloride is electrolyzed
- (3) Sodium amalgam is formed at mercury cathode
- (4) Brine is electrolyzed with Pt electrodes

Name the compound form when CO₂ and H₂O react with Na₂CO₃?

A.3 Sodium Hydrogen Carbonate Na,CO₃ + CO₂ + H₂O → 2NaHCO₃

Diaphragm cell :

Most modern method for the production of sodium hydroxide from brine (aqueous sodium chloride solution) uses a diaphragm cell, containing steel and titanium electrodes which are separated by porous diaphragms to isolate the products.

 $2NaCl + 2H_2O \longrightarrow 2NaOH + Cl_2 + H_2$

Abnormal behaviour of lithium :

• The lithium, being the first member of alkali group, exhibits the characteristic properties of alkali metals but it differs at the same time in many respects from them.

Concept Ladder

NaOH can be used in manufacturaing of paper, soap and artificial silk. It is also used for petroleum refining, purification of bauxite.

Rack your Brain

Name the compound which will be reduced in diaphragm cell to discharge hydrogen?

Reasons for its abnormal behaviour are mainly due to the following reasons:

- (i) Forms only monoxide while others form per and superoxides also.
- (ii) Li reacts with N, to form Li₃N, other alkali metals do not react with N₂.
- (iii) $Li_2CO_3 \xrightarrow{\Lambda} Li_2O + CO_2$, other carbonates do not give CO₂.
- (iv) LiOH is weak base which decomposes on heating and other hydroxide are stable.
- (v) Salts of Li are insoluble in H₂O but that of other alkali metals are soluble.
- (vi) LiNO₃ on heating evolves NO₂ and O₂ while other nitrates give only O,

Diagonal relationship between Li and Mg :

- (i) Both hard and ductile metal.
- (ii) LiOH and Mg(OH), both weak bases.
- (iii) Nitrates of both on heating evolve NO, and O,
- (iv) LiHCO₃ does not exist in solid state.
- (v) Both react with N₂ to form nitride (Li₃ and Mg_N_2).

Concept Ladder

anomolous

Li shows property because it has exceptionally small in size and have greater polarizing power in lithium ion.

Concept Ladder

Due to its anomolous property, there is increase in covalent character lithium compounds of which is responsible for their solubility in organic solvents.

Alkali metals are paramagnetic but their salts are diamagnetic. Explain :

In metals, the outermost energy shell is singly occupied, but in cations, all **A.4** the orbitals are doubly occupied (inert gas configuration).

e.g., Na, $1s^2$, $2s^2 2p^6$, $3s^2 3p^6$, $4s^1 (4s^1)$ paramagnetic Na⁺ 1s², 2s² 2p⁶, $(3s^2 3p^6)$ Diamagnetic.

Which alkali metal ion has the maximum polarising power and why?

Li⁺ ion has the maximum polarising power among all alkali metal ions. This is **A.5** due to small size of Li⁺ ion.

A.6 The anions in sodium salts are either from strong acids or weak acids. When anions are from strong acids, there is no hydrolysis and aqueous solutions are neutral (NaCl, NaNO₃, Na₂SO₄ solutions are neutral). On the other hand, when anions are from weak acids, there is hydrolysis and the solutions are alkaline in nature. For example, in the case of sodium carbonate or bicarbonate, solutions are alkaline.

 $CO_3^{2-} + H_2O \Longrightarrow HCO_3^- + OH^ HCO_3^- + H_2O \Longrightarrow H_2CO_3^- + OH^-$

07 Why is KO₂ paramagnetic ?

A.7 The superoxide O_2^- is paramagnetic because of one unpaired electron in π^*2p molecular orbital. KK σ (2s)² σ^* (2s)² σ (2p_x)² π (2p_y)² π^* (2p_y)² π^* (2p_y)¹

What happens when following compounds are heated ?
 (a) Li₂CO₃
 (b) Na₂CO₃:10H₂O
 (c) LiNO₃
 (d) NaNO₃

A.8
$$\text{Li}_2\text{CO}_3 \longrightarrow \text{Li}_2\text{O} + \text{CO}_2$$

 $\text{Na}_2\text{CO}_3.10\text{H}_2\text{O} \longrightarrow \text{Na}_2\text{CO}_3 + 10\text{H}_2\text{O}$
 $4\text{LiNO}_3 \longrightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$
 $2\text{NaNO}_3 \longrightarrow 2\text{NaNO}_2 + \text{O}_2$

9 Why do alkali metals tarnish in air?

A.9 They tarnish because of formation of their oxides.

Alkaline Earth Metals; Group 2 Elements

• The group two elements have ns² electronic configuration.

Elements	Symbols	Atomic Number	Electronic Configuration
Beryllium	Ве	4	[He]2s ²
Magnesium	Mg	12	[Ne]3s ²
Calcium	Ca	20	[Ar]4s ²
Strontium	Sr	38	[Kr]5s ²
Barium	Ва	56	[Xe]6s ²
Radium	Ra	88	[Rn]7s ²

Physical properties of alkaline earth metal :

(1) Atomic Size :

- Smaller than IA group elements, since extra charge on nucleus attracts the electron cloud.
- Size increases gradually from Be to Ba.
 Be < Mg < Ca < Sr < Ba
- (2) Oxidation State : The group 2 elements exhibit +2 oxidation state.

(3) Ionisation Energy :

 First ionisation energy is higher than IA group because of smaller atomic size and completely filled s-orbital (stable electronic configuration).

Decreasing order of ionisation energy :

Second ionisation energy is lesser than IA group.

Rack your Brain

Why first I.E. of alkaline earth metals is higher than that of corresponding alkali metals?

Concept Ladder

Exception :

Radium and its all isotopes are radioactive. The longest lived isotope being Ra²²⁶ with half-life 1600 years. This isotope is formed in natural decay series of U²³⁸.

(4) Density :

The size of group 2 elements are smaller than those of group 1 thus these elements have higher density than group 1 elements. Density increases from Be to Ra.

(5) Melting and Boiling point :

Since the cohesive force decreases down the group the melting point of elements of group 2 decreases down the group.

Exception :

Mg has the lowest melting point. Boiling points do not show regular trends. They are harder than alkali metals.

(6) Electro-positive Character or Metallic Character :

Their atomic size is smaller than IA group so these are lesser electro-positive than IA group. Electropositivity increases from Be to Ba.

(7) Conductivity :

These are also good conductor of heat and electricity due to presence of two free electrons.

(8) Nature of Bonds :

Be mainly forms covalent compound. The rest of the elements in group 2 forms ionic bond.

(9) Flame Test :

Element	Colour
Ca	Brick red
Sr	Crimson red
Ba	Apple green
Ra	Crimson

Previous Year's Questions

In context with beryllium, which one of the following statements is incorrect **[NEET-2016]**

- (1) Its hydride is electron-deficient and polymeric
- (2) It is rendered passive by nitric acid
- (3) It forms Be₂C
- (4) Its salts rarely hydrolyse

Concept Ladder

Exception :

Magnesium has lowest while beryllium has highest melting point among alkaline earth metals.

(10)Electronegative Values :

The electronegativity values of group 2 are low but are higher than the values of group 1. The value of decreases down the group.

(11) Lattice Energy :

Lattice energy of salts of alkali metals having common anion decreases on descending down the group.

(12) Hydration Energy :

The hydration energies of the alkaline earth metal ions are 4 or 5 time greater than for alkali metal ions due to their smaller size and increased charge. $\Delta H_{hydration}$ decreases down the group as the size of the ions increases.

(13) Photoelectric Effect :

These elements do not show this property as their atomic size is small hence ionisation energy is higher than IA group.

Previous Year's Questions

Which of the following compounds has the lowest melting point

	[AIPMT-2011]
(1) CaF ₂	(2) CaCl ₂
(3) CaBr ₂	(4) Cal ₂

Concept Ladder

M.P. and B.P. are more than that of alkali metals due to smaller size and closed packed structure.

2.10 Write the trend in hydration enthalpies of alkaline earth metal ions?

A.10 Like group 1 metal ions, the hydration enthalpies of group 2 metal ions decreases with increase in ionic size down the group.
Be²⁺ > Mg²⁺ > Ca²⁺ > Sr²⁺ > Ba²⁺

(14) Standard Oxidation Potential :

Standard oxidation potential of alkaline earth metals :

Element	Oxidation Reaction	Standard Oxidation Potential (volt)
Ве	${\rm Be} ightarrow {\rm Be}^{2+} + 2{\rm e}^{-}$	1.85
Mg	$Mg \rightarrow Mg^{2+} + 2e^{-}$	2.37
Са	$Ca \rightarrow Ca^{2+} + 2e^{-}$	2.87
Sr	$Sr \rightarrow Sr^{2+} + 2e^{-}$	2.89
Ba	$Ba \rightarrow Ba^{2+} + 2e^{-}$	2.90

Chemical properties of alkaline earth metal :

Reactivity : Less reactive than alkali metals. Order of reactivity : Be < Mg < Ca < Sr < Ba

Reactivity towards air :

- Except Be, these metals easily tarnished in air.
- Beryllium in powered form, burns brilliantly on ignition in air.
- In moist air, except Be all the elements convert into carbonates.
- In dry air all elements of II-A give nitride and oxide both.

Reactivity towards oxygen :

- Alkaline earth metals reacts with O₂ to form 'MO' type oxides.
 - (M = Be, Mg, Ca, Sr, Ba)
- In II-A only Ca, Sr, Ba form peroxide.
 Ex: CaO₂, SrO₂, BaO₂
- - CaO, SrO and BaO \rightarrow Strong basic
- Basic properties increases from BeO to BaO.

Concept Ladder

(i) Be, Mg and Ca form monoxides while Sr and Ba form peroxides.(ii) The solubilities of hydroxides of alkaline

earth metals increases on moving down the group i.e., $Be(OH)_2 < Mg(OH)_2 < Ca(OH)_2$ $< Sr(OH)_2 < Ba(OH)_2$.

Rack your Brain

Why Be and Mg don't show any colour?

In which of the following the
hydration energy is higher than the
lattice energy**[AIPMT-2007]**(1) BaSO4(2) MgSO4(3) RaSO4(4) SrSO4

Previous Year's Questions

Reactivity towards hydrogen :

- Except Be all the alkaline metals forms MH₂ type hydrides (MgH₂, CaH₂, SrH₂, BaH₂) on heating directly with H₂.
- BeH₂ is prepared by action of BeCl₂ with LiAlH₄ 2BeCl₂ + LiAlH₄ \rightarrow 2BeH₂ + LiCl + AlCl₃ Reducing agent
- BeH, and MgH, are covalent, other are ionic.

Reactivity towards water :

 Calcium, strontium, barium and radium decompose cold water readily with evolution of hydrogen.

 $M + 2H_2O \longrightarrow M(OH)_2 + H_2$

- Magnesium decomposes boiling water but beryllium does not react with water, even when red hot, its protective oxide film survives even at high temperature as its oxidation potential is lower than the other members.
- Reactivity of alkaline earth metals increases on moving down the group as the oxidation potential increases. However, the reaction of alkaline earth metals is less vigorous than alkali metals.

Reactivity towards halogens :

 All the group 2 elements combine with halogen at elevated temperatures forming their halides.

$$M + X_2 \rightarrow MX_2$$
 (X = F, Cl, Br)

 Thermal decomposition of (NH₄)₂BeF₄ is the best route for the preparation of BeF₂, and BeCl₂ is conveniently made from the oxide.

$$BeO + C + Cl_2 \xrightarrow{600-800 \text{ K}} BeCl_2 + CO$$

Reactivity towards acids :

The alkaline earth meals readily react with acids liberating dihydrogen.
 M + 2HCl → MCl₂ + H₂

How Be_2H is different from the hydrides of other members of group 2 ?

 Order of ionic nature BeCl₂ < MgCl₂ < CaCl₂ < SrCl₂ < BaCl₂

Diagonal relationship – Be and Al :

- (i) Both do not impart colour to flame.
- (ii) Carbides of both on reaction with H_2O give CH_4 .
- (iii) Both are rendered passive by conc. HNO₃.
- (iv) Oxides and hydroxides of both are amphoteric.

Magnesium

(a) Ores of Magnesium :

- (i) Magnesite MgCO₃
 - (ii) Carnallite KCl.MgCl.6H₂O
 - (iii) Asbestos Mg₃(Si₂O₅)(OH)₄
 - (iv) Epsom salt $MgSO_4$. $7H_2O$
- (b) Extraction of Mg is done by electrolysis of fused MgCl₂ which in turn is obtained from carnallite or magnesite.
 - (i) Carnallite can't be used directly to get anhydrous MgCl₂ by heating because all the water of crystallisation cannot be removed by heating. Strong heating may change Carrallite into MgO.

 $MgCl_2 + 2H_2O \xrightarrow{\Lambda} MgO + 2HCl + H_2O$

(ii) Dow's process

 $\underset{\text{From sea water}}{\text{MgCl}_2.6H_2O} \xrightarrow{\text{dry HCl}} \text{MgCl}_2 \xrightarrow{\text{Fused with NaCl}} \text{Electrolysis 700°C} \rightarrow \text{Mg}$

- (c) Compounds and uses Magnesium :
 - (i) Sorel's Cement (MgO + MgCl₂) used in dentistry.
 - (ii) Epsom salt (MgSO₄. 7H₂O) used as purgative in medicine and mordant in days.
 - (iii) Magnesia alba [3MgCO₃.Mg(OH)₂3H₂O] is used in tooth paste and cosmetics.

Calcium :

- (a) Ores
 - (i) Dolomite MgCO₃.CaCO₃
 - (ii) Gypsum $CaSO_4.2H_2O$
 - (iii) Flusopar CaF₂
 - (iv) Phosphorite $Ca_3(PO_4)_2$

Concept Ladder

The charge/radius ratio of Be²⁺ is nearly the same as that of the Al³⁺ ion. Hence Be resembles Al in some ways.

Rack your Brain

btained by

Why Mg can't be obtained by electrolysis of carnallite?

Concept Ladder

The mixed oxides (CaO.MgO) obtained from calcination of dolomite (CaCO₃.MgCO₃) are reduced by ferrosilicon.

Rack your Brain

Why Mg(OH)₂ is called 'milk of magnesia'?

- (b) Calcium oxide CaO (Burnt lime or quick lime)
 - (i) CaO + $H_2O \xrightarrow{Hissing sound} Ca(OH)_2$ + Heat
 - (ii) Mortar = CaO + Sand + Water
 - (iii) Limelight When exposed to oxyhydrogen flame, it starts emitting light called limelight.
- (c) Gypsum or albastar (CaSO₄.2H₂O)

$$CaSO_{4}.2H_{2}O \xrightarrow{390K} CaSO_{4}.\frac{1}{2}H_{2}O + 1\frac{1}{2}H_{2}O$$
_{Gypsum}
_{Gypsum}

Plaster of pairs settles and becomes hard or cooling.

(d) Milk of lime : Suspension of Ca(OH)₂ in water

Cement :

- (i) Cement is chemically Calcium silicate + Calcium aluminate + 1% gypsum
- (ii) Raw material Limestone (Provides CaO) Clay (Provides SiO₂,Fe₂O₃, Al₂O₃)
- (iii) Approximate composition of cement

CaO	50-60%
SiO ₂	20-25%
Al ₂ O ₃	5-10%
MgO	1-3%
Fe ₂ O ₃	1-3%

- (iv) If cement has
- Excess of lime cracks appear
- Excess of silica slow setting
- Less of lime weak cement
- Excess of Al₂O₃ fast setting
- (v) Cement with Fe is white cement
- (vi) Setting of cement is exothermic process.
- (vii)Concrete = cement + sand + gravel.
- (viii) Mortar = $CaCO_3$ and sands in 1 : 3 ratio.
- (ix) Reinforced cement = cement + sand + iron
 rod

Previous Year's Questions

HCl was passed through a solution of CaCl₂, MgCl₂ and NaCl. Which of the follwoing compound(s) crystallise(s)?

[NEET-2020]

- (1) Both $MgCl_2$ and $CaCl_2$
- (2) Only NaCl
- (3) Only MgCl₂
- (4) NaCl, $MgCl_2$ and $CaCl_2$

Why Ca(OH)₂ is used in white washing?

Concept Ladder

Cement was first introduced in England in 1824 by Joseph Aspdin. It is also called Portland cement.

Group–I and II Oxides Sodium Oxide : (Na₂O) :

Preparation :

 (i) Na₂O is obtained by burning Na at 180°C in a limited supply of air or O₂ and distilling off the excess of Na in vacuum.

$$2Na + \frac{1}{2}O_2 \longrightarrow Na_2O_2$$

(ii) By heating sodium peroxide or nitrate with sodium.

 $Na_2O_2 + 2Na \longrightarrow 2Na_2O$

$$2NaNO_3 + 10Na \longrightarrow 6Na_2O + N_2$$

 $2NaNO_2 + 6Na \longrightarrow 4Na_2O + N_2$

Properties :

- (i) It is white amorphous mass.
- (ii) It decomposes at 400°C into Na_2O_2 and Na.

 $2Na_2O \xrightarrow{400^{\circ}C} Na_2O_2 + 2Na$

(iii) It dissolve violently in H₂O, yielding NaOH. Na₂O + H₂O \rightarrow 2NaOH

Sodium peroxides (Na_2O_2) :

Preparation : Na_2O_2 is formed by heating the metal in excess of air or O_2 at 300°, which is free from moisture and CO_2 .

Properties :

- (i) Na₂O₂ is a pale yellow solid, becoming white in air from the formation of a film of NaOH and Na₂CO₃.
- (ii) In cold water (0°C) it produce H_2O_2 but at room temperature it produce O_2 . In ice- cold minerals acids also produces H_2O_3 .

$$Na_{2}O_{2} + 2H_{2}O \xrightarrow{0^{\circ}C} 2NaOH + H_{2}O_{2}$$

$$2Na_{2}O_{2} + 2H_{2}O \xrightarrow{25^{\circ}C} 4NaOH + O_{2}$$

$$Na_{2}O_{2} + H_{2}SO_{4} \xrightarrow{-0^{\circ}C} Na_{2}SO_{4} + H_{2}O_{2}$$

Concept Ladder

 Na_2O_2 can also be prepared by heating sodium metal on aluminium trays in air (free from CO_2) $2Na + O_2 \longrightarrow Na_2O_2$

Name the oxides formed by sodium.

- (iii) Na₂O₂ reacts with CO2, giving Na₂CO₃ and O₂ and hence its use for purifying air in a confined space e.g.ill-ventilated room, submarine, etc. $2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$
- (iv) Na₂O₂ is an oxidising agent and oxidises charcoal, CO, NH₃, SO₂.

 $3Na_2O_2 + 2C \longrightarrow 2Na_2CO_3 +$ 2Na [Deposition of metallic Na]

 $CO + Na_2O_2 \longrightarrow Na_2CO_3$ $SO_2 + Na_2O_2 \longrightarrow Na_2SO_4$ 2NH₃ + 3Na₂O₂ → 6NaOH + N₂

(v) It contains peroxide ion $[-0-0-]^{-2}$

Oxides of Potasssium :

	K ₂ O	K ₂ O ₂	K ₂ O ₃	KO ₂
Colours	White	White	Red	Bright yellow

Preparation :

(i)
$$2KNO_3 + 10 K \xrightarrow{\text{Heating}} 6K_2O + N_2$$

 $K_2O \xrightarrow{\text{Heating}} K_2O$
(White) K_2O
(Yellow)

$$K_2O + H_2O \longrightarrow 2KOH$$

(ii)
$$2K + O_2 \xrightarrow{Controlled}{Air at 300^{\circ}C} K_2O_2$$

- (iii) Passage of oxygen through a blue solution of potassium in liquid ammonia yields oxides, KO_2 (deep yellow), K_2O_3 (red) and K_2O_2 (white) $\mathsf{NH}_3 \xrightarrow{\mathsf{O}_2} \mathsf{K}_2 \mathsf{O}_2 \xrightarrow{\mathsf{Virt}} \mathsf{K}_2 \mathsf{O}_3 \xrightarrow{\mathsf{NO}_2} \mathsf{KO}_2 \xrightarrow{\mathsf{Red}} \mathsf{KO}_2$
- KO₂ reacts with water and produces hydrogen peroxide and oxygen both. $2KO_2 + 2H_2O \longrightarrow 2KOH + H_2O_2 + O_2$

Concept Ladder

K₂O is an unstable substance which easily oxidized to other oxides, peroxides or acid oxide of potassium (KHO).

Rack your Brain

Name the industrial products in which you can find potassium oxides?

Previous Year's Questions

A solid compound 'X' on heating gives CO₂ gas and a residue. The residue mixed with water forms 'Y'. On passing an excess of CO₂ through 'Y' in water, a clear solution, 'Z' is obtained. On boiling 'Z', compound 'X; is reformed. The compound 'X' is : [AIPMT(Mains)-2010] (1) Na₂CO₂ (2) $K_2 CO_3$ (3) $Ca(HCO_3)_2$ (4) $CaCO_3$

KO₃:

 $\underset{(Dry powdered)}{\mathsf{(Dry powdered)}} + \operatorname{O_3} \xrightarrow{-10^\circ \text{ to } -15^\circ \text{C}} \underset{(Orange solid)}{\mathsf{KO}_3}$

(Ozonised oxygen)

Magnesium Oxide (MgO) :

• It is obtained by heating natural magnesite and also called magnesia.

Properties :

- (i) It is white powder.
- (ii) Its melting point is 2850°C, hence used in manufacture of refractory brick for furnaces.
- (ii) It is slightly soluble in $\rm H_{2}O$ imparting alkaline reaction.

Calcium Oxide (CaO) :

• CaO is commonly called as quick lime or lime and made by decomposing lime stone at a high temperature about 1000°C.

 $CaCO_3 \longrightarrow CaO + CO_2 \qquad \Delta H = 42000 cal$

Properties :

- (i) It is white amorphous powder of melting point 2570°C.
- (ii) It ejects intense light (lime light), when heated in O_2-H_2 flame.
- (iii) It combines with some acidic oxide and have properties similar to basic oxide.

 $CaO + SiO_2 \longrightarrow CaSiO_3$ $CaO + CO_2 \longrightarrow CaCO_3$

(iv) It combines with H_2O to produce Ca(OH)₂.

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

Magnesium Peroxide (MgO₂) and Calcium Peroxide (CaO₂) :

• MgO₂ and CaO₂ are obtained by passing H₂O₂ in a solution of Mg(OH)₂ and Ca(OH)₂ respectively.

Concept Ladder

MgO₂ is used as an antiseptic in tooth paste as a bleaching agent.

Rack your Brain

(i) What is slaking of lime?(ii) Quick lime combines with which types of oxides?

MgO can also be obtained by burning Mg in air, by heating hydroxide, nitrate, sulphate or carbonate. Oxide prepared by heating magnesite (MgCO₃) is called Calcined Magnesia.

Hydroxides Sodium Hydroxides :

Preparation :

(i) Electrolysis of Brine :

 $NaCl \longrightarrow Na^+ + Cl^-$

 $2 \operatorname{Cl}^{-} \longrightarrow \operatorname{Cl}_{2} + 2 e^{-}$ At anode :

 $2 H^+ + 2 e^- \longrightarrow H_2$ At cathode:

(ii) Caustication of Na, CO, (Gossage's method) :

$$Na_2CO_3 + Ca(OH)_2 \implies 2NaOH + CaCO_3$$

Since the K_{sp} (CaCO₃) < K_{sp} (Ca(OH)₂, the reaction shifts towards right.

Properties :

- (i) NaOH is highly corrosive solid and white crystalline.
- (ii) It has stablized form towards heat.
- (iii) It's aqueous solution alkaline in nature and soapy in touch.
- (iv) $NH_{4}Cl + NaOH \longrightarrow NaCl + NH_{3} + H_{2}O$ FeCl₃ + 3NaOH → Fe(OH)₃ + 3NaCl ZnCl₂ + 2NaOH -----> Zn(OH)₂ + 2NaCl

$$Zn(OH)_2 + 2NaOH \xrightarrow{Excess} Na_2ZnO_2 + 2H_2O$$

soluble

[Same with AlCl₃, SnCl₂, PbCl₂]

(v) Amphoteric and acidic oxides gets dissolved easily e.g.

 $\begin{array}{c} \text{CO}_2 + 2\text{NaOH} \longrightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \\ \text{Al}_2\text{O}_3 + 2\text{NaOH} \longrightarrow 2\text{NaAlO}_2 + \text{H}_2\text{O} \end{array}$

- (vi) Al and Zn metal gives hydrogen from NaOH $2Al + 2NaOH + 2H_2O \longrightarrow 3H_2 + 2NaAlO_2$
- (vii)Several non metals such as P, Cl, S etc. yield a hydride instead of H₂ e.g. $4P + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$ (Disproportionation reaction)

Concept Ladder

All peroxides of alkaline earth metals are white solids crystalline ionic containing the peroxide ion, 0,2-. Treatment of peroxide with acids librates with hydrogen peroxides.

 $MgO_2 + 2HCl \rightarrow MgCl_2 + H_2O_2$

Rack your Brain

Which cell is used for manufacturing of sodium hydroxide?

Previous Year's Questions

Which of the following oxides is not expected to react with sodium hydroxide?

		[AIPMT]
(1) CaO	(2) SiO ₂	
(3) BeO	(4) B ₂ O ₃	
(1) CaO (3) BeO	(2) SiO ₂ (4) B ₂ O ₃	

Potassium Hydroxide :

Preparation : By electrolysis of aqueous solution of KCl.

Properties : Same as NaOH.

- (a) It has stronger base compared to NaOH.
- (b) Solubility in H₂O is more compared to NaOH.
- (c) In alcohol, sodium hydroxyde is sparingly soluble but KOH is highly soluble.
- (d) As a reagent potassium hydroxide is less frequently used but in absorption of CO₂, potassium hydroxide is preferably used compared to sodium hydroxide, because potassium bicarbonate formed is soluble whereas sodium bicarbonate is insoluble, hence choke the tubes of apparatus used.
- Magnesium Hydroxide : It occurs in nature as mineral brucite.
- **Preparation :** Mg(OH)₂ can be prepared by adding caustic soda solution to a solution of Mg-sulphate or chloride solution.

$$Mg^{2+} + 2NaOH \longrightarrow 2 Na^{+} + Mg(OH)_{2}$$

Properties :

 (i) It can be dried at temp. upto 100°C only, otherwise at higher temp. it breaks down into its oxide.

 $Mg(OH)_2 \longrightarrow MgO + H_2O$

(ii) It dissolves in ammonium chloride solution.

$$Mg(OH)_2 + 2NH_4Cl \longrightarrow MgCl_2 + 2NH_4OH$$

 Thus, magnesium hydroxide is not therefore precipitated from a solution of Mg²⁺ ions by NH₄OH in presence of excess of NH₄Cl.

Calcium Hydroxide :

Preparation : By spraying water on quick lime. CaO + $H_2O \longrightarrow Ca(OH)_2$

Properties :

- (i) It is sparingly soluble in water.
- (ii) It's solubility in hot H₂O is less than that of cold H₂O. Therefore solubility decreases with increase in temperature.

Concept Ladder

The hydroxides of all alkali metals are white crylstalline solids. They are strongest of all the gases and readily dissolve in water with the evolution of extent heat.

Rack your Brain

Write the increasing order of basic strength in hydroxides of alkaline earth metals?

Previous Year's Questions

The suspension of slaked lime in water is known as **[NEET-2016]** (1) Aqueous solution of slaked lime

- (2) Limewater
- (3) Quicklime
- (4) Mile of lime

- (iii) Ca(OH)₂ readily absorbs CO₂ as used as a test for the gas.
- (iv) It is used as a mortar, which is a mixture of slaked lime (1 Part) and sand (3 Parts) made into paste with H₂O.

Carbonates

Sodium Carbonate : Preparation :

(i) Leblanc Process :

NaCl + H_2SO_4 (conc.) \longrightarrow Mild heating \longrightarrow NaHSO₄ + HCl

 $\begin{array}{ccc} \mathsf{NaCl} & + & \mathsf{NaHSO}_4 & \xrightarrow{\mathsf{Strongly}} & \mathsf{Na_2SO_4}_{(\mathsf{Salt Cake})} & + & \mathsf{HCl} \end{array}$

 $Na_2SO_4 + 4C \longrightarrow Na_2S + 4CO$ $Na_2S + CaCO_3 \longrightarrow Na_2CO_3 + CaS$

(ii) Solvay Process :

It is used for the preparation of washing soda. $(Na_2CO_2.10H_2O)$ soda $(NaHCO_3)$

Concept Ladder

The hydroxides of alkaline earth metals are less basic corresponding alkali metal hydroxides because of higher ionization energies, smaller ionic sizes and greater lattice energies.

Rack your Brain

Arrange alkaline earth metals in increasing order of their solubility in water?

H₂CO₃ can not be prepared from Solvay's process since KHCO₃ is water soluble . (no PPT) Washing soda (Na₂.CO₃.10H₂O) also shows efflorescence just like blue vitriol.

$$Na_{2}CO_{3}.10H_{2}O \xrightarrow{\sim 375 \text{ K}} Na_{2}CO_{3}.H_{2}O + 9H_{2}O$$

$$\downarrow > 375 \text{ K}$$

$$Na_{2}CO_{3}.10H_{2}O$$
(Soda asb)

Properties :

- (i) Anhydrous Na₂CO₃ is called as soda ash, which melts at 852°C but does not decompose on heating.
- (ii) It forms number of hydrates.

 Na_2CO_3 . $H_2O \longrightarrow Crystal carbonate$

 $Na_2CO_3 + Moisture in air \longrightarrow Soda ash$ $Na_2CO_3 . 7H_2O \longrightarrow Calcined soda$ $Na_2CO_3 .10H_2O \longrightarrow Washing soda$

(iii) Sodium carbonate absorbs CO₂ yielding sparingly soluble NaHCO₃ which can be calcined at 250° to get pure Na₂CO₃.

 $Na_2CO_3 + H_2O + \underset{250^{\circ}C}{\longrightarrow} 2NaHCO_3$

(iv) It dissolved in acid with effervescence of carbon dioxide and causticized by lime to give NaOH.

 $Na_2CO_3 + HCl \longrightarrow 2NaCl + H_2O + CO_2$

$$Na_2CO_3 + Ca(OH)_2 \longrightarrow 2NaOH + CaCO_3$$

Potassium Carbonate :

• By Leblanc process, it can be prepared but by Solvay process it cannot be prepared because KHCO₃ is soluble in water.

Concept Ladder

The Na_2CO_3 exists in various forms, namely anhydrous sodium carbonate Na_2CO_3 (soda-ash); monohydrate $Na_2CO_3.H_2O$ (crystal carbonate); heptahydrate $Na_2CO_3.7H_2O$ and decahydrate $Na_2CO_3.10H_2O$ (washing soda).

Rack your Brain

Write down the raw materials used in Solvay process?

On heating which of the following releases CO₂ most easily?

Previous Year's Questions

[NEET-2015]

(1) Na ₂ CO ₃	(2) MgCO ₃
(3) CaCO ₃	(4) K ₂ CO ₃

Properties :

 It resembles with Na₂CO₃, melting point is 900°C but a mixture of Na₂CO₃ and K₂CO₃ melts at 712°C.

Calcium Carbonate :

 It occurs in nature as chalk, calcite, coral, limestone, marble etc. It is prepared by dissolving limestone or marble in HCl and removing Al and Fe present, by precipitating with ammonia and then adding ammonium carbonate to the solution.

$$CaCl_{2} + (NH_{4})_{2}CO_{3} \longrightarrow CaCO_{3} + 2NH_{4}Cl$$

Properties :

(i) It dissociates above 1000°C as follows :

 $CaCO_3 \longrightarrow CaO + CO_2$

 (ii) CaCO₃ dissolves in water containing CO₂ forming Ca(HCO₃)₂ but is precipitated from the solution by boiling.

$$CaCO_3 + H_2O + CO_2 \xrightarrow{\text{Boiling}} Ca(HCO_3)_2$$

Magnesium Carbonate :

 Mg(CO₃)₂ occurs in nature as magnesite, isomorphous with calcite. It is obtained as a white ppt by adding NaHCO₃ to a solution of a magnesium salt; but only basic carbonate, called magnesia alba, having the approximate composition MgCO₃. Mg(OH)₂.3H₂O is precipitated.

Properties :

Same as calcium carbonate.

Bicarbonates

Sodium Bicarbonates :

Preparation :

By adsorption of CO_2 in Na_2CO_3 solution. $Na_2CO_3 + H_2O + CO_2 \implies 2NaHCO_3 > 100^{\circ}C$ less soluble

Concept Ladder

All the carbonates of alkaline earth metals are however more soluble in the presence of CO_2 due to the formation of corresponding bicarbonates.

 $CaCO_3(s) + CO_2(g) + H_2O(g) \rightarrow Ca(HCO_3)_2(aq)$

Why potassium carbonate cannot be prepared by Solvay process?

Rack your Brain

Previous Year's Questions

Which of the following substance is used in the laboratory for fast drying of neutral gases [AIIMS] (1) Sodium phosphate

- (2) Phosphorus pentoxide
- (3) Sodium sulphate
- (4) Anhydrous calcium chloride

Uses : It is used as baking powder and in medicine.

Potassium bicarbonates :

Preparation : Same as NaHCO, **Properties :** Same as NaHCO₃

But KHCO₃ is soluble in H₂O and more alkaline compared to NaHCO₃.

Magnesium bicarbonate :

 $MgCO_3 + CO_2 + H_2O \xrightarrow{\text{Boiling}} Mg(HCO_3)_2$

Calcium bicarbonate :

 $CaCO_3 + CO_2 + H_2O \implies Ca(HCO_3)_2$

Chlorides

Sodium Chloride :

Prepared from brine containing 25% NaCl.

Properties :

- (i) It is nonhygroscpic but the presence of magnesium chloride in common salt renders it hygroscopic.
- (ii) It is used to prepare freezing mixture in laboratory (Ice-common salt mixture is called freezing mixture and temperature goes down to -23°C).
- (iii) For melting ice and snow on road.

Potassium Chloride :

KCl is also occurs in nature as sylvyne (KCl) or carnalite (2KCl, MgCl₂, 6H₂O)

Uses : It is used as fertiliser.

Preparation : By dissolving MgCO₃ in dil. HCl.

 $MgCO_3 + 2HCl \longrightarrow MgCl_2 + H_2O + CO_2$

Properties :

- (i) It crystallises as hexahydrate, MgCl₂.6H₂O.
- (ii) It is deliquescent solid.
- (iii) This hydrate undergoes hydrolysis as follows.

MgCl₂.6H₂O → Mg(OH)Cl + HCl + 5H₂O

Mg(OH)Cl → MgO + HCl

Concept Ladder

The bicarbonates of alkaline earth metals are prepared by passing CO, through suspension of metal а carbonates in water.

 $M_2CO_3 + H_2O + CO_2 \rightarrow M(HCO_3)_2$ (insoluble) (soluble)

Rack your Brain

Write some uses of bicarbonates of K, Mg and Ca.

Concept Ladder

All the bicarbonates of alkaline earth metals are stable only in solution and have not been isolated in the pure state.

- Hence, anhydrous magnesium chloride cannot be prepared by heating this hydrate.
- Because of this formation of HCl. Sea water cannot be used in marine boilers which corrodes the iron body.
- (iv) Anhydrous MgCl₂ can be prepared by heating a double salt like.

MgCl₂. NH₄Cl . 6H₂O as follows :

 $\begin{array}{l} \mathsf{MgCl}_2.\mathsf{NH}_4\mathsf{Cl}.\mathsf{6H}_2\mathsf{O} \xrightarrow{-\mathsf{H}_2\mathsf{O}} & \mathsf{MgCl}_2.\mathsf{NH}_4\mathsf{Cl} \\ \mathsf{MgCl}_2.\mathsf{NH}_4\mathsf{Cl} \xrightarrow{\mathrm{Strong}} & \mathsf{MgCl}_2 + \mathsf{NH}_3 + \mathsf{HCl} \end{array}$

Sorel Cement :

Sorel cement is set to hard mass on standing when MgO and $MgCl_2$ (paste like). This is used in flooring, dental filling etc.

Calcium Chloride :

- (i) It is the by-product in Solvay process.
- (ii) CaCl₂ may also be prepared by dissolving the carbonate in HCl.

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$

Properties :

- (i) It is deliquescent crystals.
- (ii) CaCl₂ gets hydrolysed like MgCl₂ hence anhydrous CaCl₂ cannot be prepared.

 $CaCl_2 + H_2O \implies CaO + 2HCl$

Hence, anhydrous $CaCl_2$ is prepared by heating $CaCl_2.6H_2O$ in a current of HCl (dry).

(iii) Anhydrous calcium chloride is used in drying gases and organic compounds but not ammonia or alcohol due to the formation of CaCl₂.8NH₃ and CaCl₂.4C₂H₂OH.

Sulphates

Sodium Sulphate :

Preparation : Na₂SO₄ is formed in the 1st step of Leblanc process by heating common salt with sulphuric acid.

Concept Ladder

Slaked lime reacts with chlorine to form calcium hypo chloride; a constituent of bleaching powder. CaCl₂ + Ca(OCl)₂ + 2H₂O

reaction? CaCl₂ + 2NaOH \rightarrow A + B

Solubility of the alkaline earth's metal sulphates in water decreases in the sequence? **[AIPMT-2015]** (1) Ca > Sr > Ba > Mg (2) Sr > Ca > Mg > Ba (3) Ba > Mg > Sr > Ca (4) Mg > Ca > Sr > Ba Thus the salt cake formed is crystalised out from its aq. solution as Na₂SO₄.10H₂O. This termed as Glauber's salt.

When it is crystalised below 32.4°, then $Na_2SO_4.10H_2O$ is obtained but above 32.4°C, Na₂SO₄ (anhyd.) comes out.

Properties :

 $Na_{2}SO_{4}$ is reduced to $Na_{2}S$ when fused with C.

$$Na_2SO_4 + 4C \longrightarrow Na_2S + 4CO$$

Magnesium Sulphate :

Preparation :

- (i) It is obtained by dissolving $MgSO_4.H_2O$ in boiling water and then crystallising the solution as a hepta hydrate. i.e. MgSO₄.7H₂O. It is called as Epsom salt.
- (ii) It is also obtained by dissolving MgCO₃ in hot dil. H₂SO₄.

 $MgCO_3 + H_2SO_4 \longrightarrow MgSO_4 + H_2O + CO_2$

(iii) By dissolving dolomite (CaCO₃.MgCO₃) in hot dil. H_2SO_4 and removing the insoluble $CaSO_4$ by filtration.

(iv) It is isomorphous with $ZnSO_4$.7H₂O, FeSO₄.7H₂O. **Calcium Sulphate :**

It occurs as anhydrite calcium sulphate and as the dihydrate gypsum, alabaster or satin-spar.

Properties :

(i)

 $Gypsum(CaSO_4.2H_2O) \xrightarrow{120^{\circ}C} 2CaSO_4.H_2O \text{ (Plaster or Paris)}$ 200°C (anhydrous) CaSO₄ Dead burnt plaster

Solubility of CaSO, at first increase upto (ii)

(Na₂SO₄.10H₂O) (v) Borax $(Na_2B_4O_7.10H_2O)$ sodium metal.

Previous Year's Questions

Crude sodium chloride obtained by crystallisation of brine solution does not contain

[NEET-2019]

(1) MgCO ₄	(2) Na ₂ SO ₄
(3) MgCl ₂	(4) $CaSO_4$

a certain point and then decreases with rise of temperature.

- (iii) POP is used in mould making due to its porous body.
- (a) Mg_3N_2 when reacted with water, gives off NH_3

.11 but HCl is not obtained from MgCl₂ on reaction with water at room temperature. Why ?

- (b) The crystalline salts of alkaline earth metals contain more water of crystallization than corresponding alkali metal salts. Why ?
- A.11 (a) Mg_3N_2 is a salt of a strong base and weak acid hence its hydrolysis is possible.

 $Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$

 $MgCl_2$ is a salt of a strong base, $[Mg(OH)_2]$, and a strong acid, (HCl), and hence its hydrolysis is not possible.

- (b) Alkaline earth metal ions have higher tendency of hydration in comparison to alkali metal ions due to its small size and high Z_{eff}. Thus, the salts of alkaline earth metals contain more water of crystallization than the salts of alkali metals.
- O 19 What happens when :
 - (i) Beryllium carbide reacts with water.
 - (ii) Magnesium nitrate is heated.
 - (iii) Quick lime is heated in electric furnace with powdered coke.
- A.12 (i) Methane gas is evolved.

 $Be_2C + 4H_2O \longrightarrow 2Be(OH)_2 + CH_4$

(ii) Brown coloured gas, NO_2 , is evolved.

 $2MgNO_3 \longrightarrow 2MgO + 4NO_2 + O_2$

(iii) Calcium carbide is formed with evolution of CO gas.

CaO + 3C $\xrightarrow{\text{Electric}}$ CaC₂ + CO

	Properties	Alkaline Earth Metals	Alkali Metals	
(i)	Electronic configuration	Two electrons are present in the valency shell. The configuration is ns ² .	One electron is present in the valency shell. The configuration is ns ¹ .	
(ii)	Valency	Bivalent	Monovalent.	
(iii)	Electropositive nature	Less electropositive.	More electropositive.	
(iv)	Hydroxides	Weak bases, less soluble and decompose on heating.	Strong bases, highly soluble and stable towards heat.	
(v)	Bicarbonates	These are not known in free These are known in solid state. Exist only in solution.		
(vi)	Carbonates	Insoluble in water. Decompose on heating.	Soluble in water. Do not decompose on heating (Li ₂ CO ₃ is an exception).	
(ix)	Nitrates	Decompose on heating evolving a mixture of NO ₂ and oxygen. Decompose on heating evolving only oxygen.		
(x)	Solubility of salts	Sulphates, phosphates, fluorides, chromates, oxalates, etc., are insoluble in water.	Sulphates, phosphates, fluorides, chromates, oxalates etc, are soluble in water.	
(xi)	Physical properties	Are less reactive and comparative harder metals. High melting points. Diamagnetic.	Soft, low melting points. Paramagnetic.	
(xii)	Hydration of compounds	The compounds are extensively hydrated. MgCl ₂ .6H ₂ O, CaCl ₂ .6H ₂ O and BaCl ₂ .2H ₂ O are hydrated chlorides.	The compounds are less hydrated. NaCl, KCl and RbCl form non-hydrated chlorides.	
(xiii)	Reducing power	Weaker, as ionization potential values are high and oxidation potential values are low. Stronger, as ionization potential values are low and oxidation potential are high.		

2.13 Why cannot sodium and potassium be prepared by the electrolysis of their aqueous solutions ?

A.13 The electrode potential i.e. reduction potential of Na (-2.71 V) or K (-2.92) is much lower than that of H_2O (-0.83 V), therefore, upon electrolysis, water gets reduced in preference to Na⁺ or K⁺ ions. In other words, sodium and potassium cannot be obtained by electrolytic reduction of Na⁺ or K⁺ ions in aqueous solution.

14 Amongst alkali metals, why is lithium regarded as strongest reducing agent in aqueous solutions ?

- A.14 Li+ has the smallest size among alkali metals therefore, it has highest hydration energy.
 In other words, it has the lowest electrode potential (E° = 3.04 V), i.e., it has the maximum tendency to lose electrons and hence is the strongest (most apt) reducing agent amongst alkali metals.
- **Q.15** Why Be and Mg do not give characteristic colour to the flame whereas other alkaline earth metals do give?
- A.15 Be and Mg have high ionization enthalpies and hence their valence electrons are not easily excited.

2.16 Explain why halides of beryllium fume in moist air but other alkaline earth metal halides do not?

A.16 BeCl₂ being a salt of weak base, Be(OH)₂ and a strong acid, HCl undergoes hydrolysis by water to form HCl which fumes in air. BaCl₂, on the other hand, being a salt of a strong base, Ba(OH)₂ and strong acid, HCl does not undergo hydrolysis by water to form HCl and hence does not fume in air. BeCl₂ + 2H₂O \longrightarrow Be(OH)₂ + 2HCl BaCl₂ + H₂O \longrightarrow Ba(OH)₂ + 2HCl

Summary

•	General Electronic Configuration	ns ¹
•	General Oxidation State is	+1
•	Atomic Size	Li < Na < K < Rb < Cs
•	Ionisation Energy	Li > Na > K > Rb > Cs
•	Density	Li < K < Na < Rb < Cs
	Reducing property (i)	Li < Na < K < Rb < Cs (Molten)
	(ii)	Li > K ≈ Rb > Cs > Na (Aqueous)
•	Simple ionic radii are in the order	$Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$
	Hydrated radii	$Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$
	Ionic mobility	$Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$
•	Li shows resemblance with Mg, an	element of group IIA. This resemblance is
	termed as diagonal relationship.	
	(i) Ionic radii and atomic radii of Li	and Mg are not very much different.
	(ii) Both have high polarising power	(Ionic potential).
•	General Electronic Configuration	ns²
•	General Oxidation State is	+2
•	Atomic Size	Be < Mg < Ca < Sr < Ba
•	Ionisation Energy	Be > Mg > Ca > Sr > Ba
•	Reducing Property	$Be^{+2} < Mg^{+2} < Ca^{+2} < Sr^{+2} < Ba^{+2}$
	(in aqueous and gaseous medium)	
•	Mg(OH) ₂ is called 'milk of magnesia a of lime'.	nd is used as antacid. Ca(OH) ₂ is called 'milk
•	Be shows diagonal relationship wit	h aluminium, the second element of III A
	group.	
	 (a) The polarising power of Be²⁺ and A are covalent. 	l^{3+} ions is high, consequently the compounds

- (b) The electronegativity of both the elements is nearly the same. (c) Be_2C and Al_4C_3 on hydrolysis evolve CH_4 .