Hydrogen

Element	Hydrogen
Electronic Configuration	1s ¹
Atomic Number	1
Electronegativity	2.1

Position of hydrogen in the periodic table :

Position for hydrogen is not fixed in the periodic table due to following reasons :

- (1) Hydrogen resembles group 1 elements. (Alkali metals).
- (2) Hydrogen resembles group 17 elements. (Halogens).
- (3) Hydrogen exhibits other properties which different from both alkali metals and halogens.

Types of hydrogen :

(1) Atomic Hydrogen :

 $H - H \xrightarrow{\text{Electric spark}}{200^{\circ}C} 2H$ (Atomic hydrogen)

, $\Delta H = + 104.5$ Kcal.

- When hydrogen gas is passed through an electric arc between two tungsten filaments, hydrogen s dissociated into atoms.
- Used for welding purpose.
- (2) Nascent Hydrogen : When hydrogen is passed through acidified potassium permanganate solution or FeCl₃ solution neither of them is reduced however when Zn pieces are added both gets reduced.

 $Zn + H_2SO_4 \text{ (dil.)} \rightarrow ZnSO_4 + 2[H]$ Nascent hydrogen

Concept Ladder

The name hydrogen comes from Greek words "Hydro (meaning water) and genes (Meaning creator). It was named by French Chemist Antoine Lavoisier because when it burns it creates water.

Previous Year's Question

The ionization of hydrogen atom would give rise to [AIPMT]

- (1) Hydride ion
- (2) Hydronium ion
- (3) Proton
- (4) Hydroxyl ion

- and hydrogen has only one electron in their outer shell.
- (ii) Electropositive character : Like the alkali metals hydrogen has a tendency to lose its electron to form unipositive ion.

$$H \longrightarrow H^{+} + e^{-} ;$$

Li \longrightarrow Li⁺ + e⁻
Na \longrightarrow Na⁺ + e

- (iii) **Oxidation state :** Hydrogen, like alkali metals have +1 oxidation state.
- (iv) Affinity for non-metals : H₂ as well as alkali metals (Na, K, Rb etc.) have a strong affinity towards non-metals.

Non-MetalHydrogenAlkali Metal CompoundsChloridesHClNaClKClOxidesH2QNa2QK2QSulphidesH2SNa2SK2S

- (v) Valency : Alkali metals as well as hydrogen show electrovalency of +1.
- (vi) **Reducing nature :** Hydrogen-like alkali metals, acts as reducing agent.

Rack your Brain

Why hydrogen is not termed as s-block element despite it is placed in Ist group?

proteins and fats.

 H_{2} is believed to be

one of three elements

produced in the Big Bang.

The others are He and Li.

2.

Difference of hydrogen with alkali metals :

- (i) Non-metallic character : Hydrogen is a non-metal while alkali metal are metalic.
- (ii) **Nature of oxide :** Nature of oxide of hydrogen is neutral while oxides of alkali metals are basic in nature.
- (iii) Atomicity : Hydrogen is diatomic in nature (H₂) while alkali metals are monoatomic.
- (iv) Nature of compounds: Nature of compounds of hydrogen with halogens (HCl, HBr, HF, HI) are low boiling covalent compound while halides of alkali metals are low melting ionic solids (LiF, NaCl, KBr, etc.)
- (v) **Ionisation energy :** Ionisation energy of hydrogen is very high in comparison to alkali metals.

Concept Ladder

Hydrogen shows dual nature. It behaves as electropositive element like alkali metals as it can lose the planetary electron. It also behaves as an electronegative element like halogens as it can gain one more electron to saturate 1s subshell.

Element	Hydrogen	Lithium	Sodium	Potassium
IE (kJ mol-1)	1312	520	495	418

Similarities of hydrogen with halogens :

- (i) **Electronic configuration :** Electronic configuration of hydrogen resembles the halogens in having one electron less than the next inert gas in its atom.
- (ii) **Diatomic nature :** Like-hydrogen halogens are also diatomic. (H₂, F₂, Cl₂, Br₂)
- (iii) Non-metallic character : Hydrogen as well as halogens are non-metallic.
- (iv) Electro-negative nature : Hydrogen as well as halogens can gain an-electron to form negative ion.

H + e⁻ ---- H⁻ ; Cl + e⁻ ---- Cl⁻

(v) Oxidation state : Hydrogen like halogens show -1 oxidation state.

Previous Year's Question

One would expect proton to have very large [AIPMT]

- (1) Charge
- (2) Ionization potential
- (3) Hydrotion energy
- (4) Radius

Compound	NaH	NaCl	NaBr	Nal
Oxidation No.	-1	-1	-1	-1

(vi) Ionisation potential :

Element	Н	F	Cl	Br	T
Ionization potential (eV)	13.5	17.4	13.0	11.82	10.43

(vii) Nature of compounds :

Differences with halogens :

(i) Nature of oxide :

(ii) Absence of lone pair of electrons :

(iii) Less electro-negative : Hydrogen is less electro-negative than halogens.

Concept Ladder

- Every hydrogen atom in our body is likely 13.5 billion years old because they were created at the birth of the universe.
- Hydrogen is about 14 times lighter than air.

Note :

	Protium	Deuterium	Tritium
	Ordinary H	Heavy H	Radioactive H
Representation	1 ₁ H	² ₁ D	³ т 1
Neutrons	0	1	2
Occurrence	99.98%	0.16%	10 ⁻¹⁵ %

Protium Deuterium Tritium Electron Proton Neutron

Isotopic Effect :

In Isotopic effect minimum changes occurs in chemical properties like state of chemical reaction etc. and maximum changes occurs in physical properties like boiling point, bond energy, melting point while

Concept Ladder

The bond energy of H-H bond is least and hence it is most reactive among the isotopes of hydrogen. Bond energy $H_2 < D_2 < T_2$

difference in mass. isotopes can be defined as the 3 times variants of chemical elements that possess the same number of proton and electrons, but a different number of neutrons. 2 times Ex. ${}_{1}^{1}$ H (Protium), ${}_{1}^{2}$ D (Deuterium), $^{3}_{1}T$ (Tritium) While in other isotopes like ₇N¹⁴, ₇N¹⁵; only a fractional mass is increased and similarly in case of carbon (₆C¹⁴, ₆C¹³, ₆C¹²) But in case of hydrogen mass increased by 2 to 3 times in their isotopes. Isotopic effect is found in : (1) H (2) N (3) C (4) All **A.1** (1) Protium, Deutorium and Tritium are the Isotopes of hydrogen. Which of the following reaction is fast and why? (i) $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ (ii) $CD_4 + Cl_2 \rightarrow CD_3Cl + DCl$ **A.2** (i) because C-H bond energy is less in comparison to C-D bond energy. Nascent hydrogen consists of : (1) Hydrogen ions in excited state (2) Hydrogen ions with excess energy (3) Solvated protons

Definitions

The Isotopic effect is found only in hydrogen isotopes ($_{1}H^{1}$, $_{1}D^{2}$, $_{1}D^{3}$). Because there is large

A.3 (4)

Hydrogen atom 'H' is termed nascent hydrogen when it has excess of energy.

(4) Hydrogen atoms with excess energy

Ortho and Para Hydrogen :

- Hydrogen molecule contains two hydrogen atoms, each atom has one proton in the nucleus with an electron. Like electron, proton is also spinning about its axis.
- If two protons in the hydrogen molecule have spins in the same direction then the form is termed as ortho hydrogen and if the protons spins are in opposite direction, the form is known as para hydrogen.

- (i) Parallel nuclear spin.
- (ii) Nuclear spin = $\frac{1}{2} + \frac{1}{2} = 1$
- (iii) More stable at room temperature.

Q.4 Ortho- and para-hydrogen differ in :

- (1) Atomic number
- (2) Mass number
- (3) Electron spin in two atoms
- (4) Nuclear spin in two atoms
- **A.4** (4)

Factual statement

Definitions

Ortho hydrogen molecules are those in which the spins of both the nuclei are in the same direction. Molecules of hydrogen in which the spins of both the nuclei are in the opposite direction are called Para hydrogen

- (i) Antiparallel nuclear spin
- (ii) Nuclear spin = $\frac{1}{2} \frac{1}{2} = 0$
- (iii) More stable at low temperatu

Method of preparation of hydrogen : Lab method :

- (1) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$
- (2) Mg + 2HCl \rightarrow MgCl₂ + H₂
- (3) $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ (Sodium zincate)
- (4) $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$ (Sodium metaaluminate)

Industrial preparation:

(1) Lane's process : In Lane's process steam is passed over hot iron, also known as gassing reaction.

$$3Fe + 4H_2O \xrightarrow{1027K-1073K} Fe_3O_4 + 4H_2$$
(Steam)

 Iron is generated by reducing magnetic oxide with water gas (CO + H₂). This reaction is called vivifaction.

 $Fe_{3}O_{4} + 4CO \longrightarrow 3Fe + 4CO_{2} \longrightarrow Vivification$ $Fe_{3}O_{4} + 4H_{2} \longrightarrow 3Fe + 4H_{2}O \longrightarrow Reaction$

Concept Ladder

Pure zinc is not used as it is non-porous in nature so impure granulated zinc is used which becomes porous. Concentrated sulphuric acid cannot be used as it gives SO_2 and not hydrogen. Zn + conc. $H_2SO_4 \rightarrow ZnSO_4$ + $SO_2 + 2H_2O$

- What is false about Lane's process ?
 - (1) Method is used for manufacture of dihydrogen
 - (2) It involves the oxidation of iron by steam
 - (3) It involves the reduction of $\rm H_2O_{(g)}$ by iron
 - (4) It involves the oxidation of water gas
- A.5 (4) Factual statement
- (2) Bosch process:

$$C + H_2O \xrightarrow{1000°C} CO + H_2$$

Water gas

• Water shift reaction : Water gas is mixed with steel and passed over catalytic mixture of Fe₂O₃ and Cr₂O₃ at 450°C.

$$\underbrace{\text{CO}}_{\text{Water gas}} + \underbrace{\text{H}_2}_{\text{Water gas}} \xrightarrow{450^{\circ}\text{C}, \text{H}_2\text{O}} \rightarrow \text{CO}_2 + 2 \text{H}_2$$

Concept Ladder

- Hydrogen is the only atom for which Schrodinger explain has an exact solution
- Hydrogen reacts explosively with elements oxygen, chlorine and fluorine: O₂, Cl₂, F₂.

Coal gasification :

$$C_{(s)} + H_2O_{(g)} \xrightarrow{1270 \text{ K}} CO_{(g)} + H_{2(g)}$$
(Syn-gas)

Electrolysis of NaCl :

$$NaCl_{(aq)} + 2H_2O_{(1)} \rightarrow Cl_{2(g)} + H_{2(g)} + 2Na_{(aq)}^{+} + 2OH^{-}$$

From hydrocarbons :

• Syn gas is also known as synthetic gas.

Properties of hydrogen :

Physical properties : Hydrogen gas is colourless, odourless and tasteless.

S.No.	Property	
1	Solubility	Soluble in water
2	Density	313 kcal mol ⁻¹
3	Ionisation potential	17.3 kcal mol ⁻¹
4	Electronegativity	2.1
5	Bond energy, (H–H)	436 kJ mol-1
6	Bond length, (H–H)	74 Pm

Previous Year's Question

Water gas is produced by [AIPMT]

- (1) passing steam through a red hot coke
- (2) Saturating hydrogen with moisture
- (3) Mixing oxygen and hydrogen in the ratio of 1:2
- (4) Heating a mixture of CO₂ and CH₄ in petroleum refineries.

Hydrides :

Types of hydrides :

- (A) Ionic or saline or salt like hydrides.
- (B) Covalent or molecular hydrides.
- (C) Metallic or interstitial hydrides.
- (A) Ionic hydrides : Ex : LiH, NaH, KH, RbH, CaH₂, BaH₂ etc.
- Formed by s-block elements. (Highly electropositive) except Be and Mg.
- Ionic hydrides have high melting and boiling point.
- Stability of hydrides : LiH > NaH > KH > RbH
 > CsH Similarly

$$CaH_{2} > SrH_{2} > BaH_{2}$$

• Ionic hydrides are non-volatile and nonconducting in solid states but conduct electricity in molten state.

$$\text{LiH}_{(s)} + \text{H}_2\text{O}_{(l)} \longrightarrow \text{H}_{2(g)} + \text{LiOH}_{(aq)}$$

During electrolysis ionic hydrides liberated hydrogen gas.

2H⁺ (melt)
$$\xrightarrow{\text{Anode}} H_{2(g)} + 2e^{-}$$

Concept Ladder

During the preparation of hydrides, the metal should be hydrogenated in the presence of a surface active agent in kerosene or some form of agitation should be used to prevent the decomposition of surface film of hydride on the metal which leads to incomplete conversion

Rack your Brain

Out of methane, germane and plumbane which hydride has low thermal stability?

11.

(1) 3

(3) 2

(2) 1

(4) 5

- Formed by group 14th elements.
- All these hydrides are tetrahedral.
- Ex : CH₄, SiCl₄ etc.

Electron rich covalent hydrides :

- Group 15th, 16th, 17th form electron rich covalent hydrides.
- Presence of 1, 2 and 3 lone pair of electrons with highly electronegative element-like O, N and F.
- These hydrides form hydrogen bonding. Ex : NH₂, H₂O etc.

Ex-(1)

Ex-(2)

Properties :

- These hydrides are held together by weak van der Waal's forces and in some cases by hydrogen bonding.
- These hydrides are volatile in nature having • low electrical conductivity.
- The thermal stability of 15th group hydrides are $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.

Uses:

- Boron hydrides are used as energy fuel and • propellants.
- Phosphine (PH₂) is used for Holme's singal. •
- HF is used for etching of glass.
- Act as Lewis base. •
- Acidic character increases from left to right.

HF NH₃ H₂O Neutral Acidic Basic

Concept Ladder

Hydrides of like AlH₃, B₂H₆ being electrophiles behave like lewis acids.

Rack your Brain

group

13

Why boron hydrides are used as high energy fuels and propellants?

Concept Ladder

Hydrogen is also used as a rocket fuel where liquid hydrogen is combined with liquid oxygen to produce а powerful explosion. Hydrogen can be used as a clean fuel alternative to gasoline.

13.

Hydrides of group 13th are electron deficient.

 $B_2H_6 + 2NH_3 \longrightarrow 2[H_3N \longrightarrow BH_3]$

- Elements of group 14th, 15th and 16th form polynuclear halides.
- **Ex:** C_2H_6 , C_3H_8 , C_4H_{10} for carbon Si₂H₆, Si₃H₈, Si₄H₁₀ for silicon N_2H_4 , N_3H , C_4H_{10} for nitrogen H_2O_3 , H_2O_3 for oxygen

Metallic Interstitial Halides :

- The hydrogen atoms occupy the interstitial spaces of transition elements.
- Metallic hydrides show electric conductivity. They are non-nonstoichiometric in nature.
- **Ex:** LaH₃, TiH₂, ZrH₂, HfY₂, VH, VH₂

Concept Ladder

d & f block elements have variable valencies but formation of VH₂, VH₃, CrH₂ are not possible.

Rack your Brain

Which compound on reaction with water evolves H₂ gas and gives alkaline solution?

Properties :

- Black powdery, metallic lustre and magnetic property.
- They are good conductors of electricity Conductivity decreases with increase in temperature.
- Density of hydrides is lower than those of metals from which are formed since crystal lattice expands due to absorption of hydrogen.
- High thermal conductivity.
- These generally undergo reversible decomposition into H₂ gas and metal.

Red Hot Metal + H₂ <u>Coal</u> Interstitial Hydride <u>Strong Heating</u> Metal + H₂

2.7 Which is not correct statement :

(1) s-block elements, except Be and Mg, form ionic hydride

- (2) Interstitial hydride are non-stoichiometric in nature
- (3) p-block elements form covalent hydride
- (4) d, f-block elements form ionic hydride

A.7 (4)

Hydrogen atoms occupy the interstitial spaces of d & f-block elements and they form interstitial hydrides.

Which of the f	ollowing easily re	acts with water produci	ng hydrogen ?
(1) PH ₃	(2) B ₂ H ₆	(3) CH ₄	(4) H ₂ S

A.8 (2)

 $B_2H_6 + 6H_2O \rightarrow 2B(OH)_3 + 6H_2$

Water :

- Water is a universal solvent, exists as a solid below 0°C temperature and as a gas above 100°C temperature.
- Pure form of H₂O is bad conductor of electricity due to very low degree of ionization.
- Maximum density of water is 4°C.

Group-7, 8, 9 do not form hydrides (Group 6 to 9 is referred to the hydride gap). Also in 6th group only Cr from hydride.

Concept Ladder

15.

.10 What is deionized water ?

A.10 Water free from all types of cations and anions is called deionized water.

Preparation :

 $2H_2 + O_2 \xrightarrow{\text{Electric spark}} 2H_2O$

Properties : Pure water is colourless, tasteless, odourless.

S.No.	Property	Value
1	Freezing point	0°C
2	Boiling point	100°C
3	Density	1.0g cm⁻³ at 4°C
4	Polarity	Polar
5	Bond angle	104.5°
6	Geometry	Tetrahedral

7	Shape	Bent or V-shape	
8	Enthalpy of vaporization	40.06 kJ/mol.	
9	Enthalpy of formation	–285.9 kJ/mol.	

Chemical Properties :

 pH = 7, in pure water [H⁺] = [OH⁻] = 10⁻⁷ at 25°C.

Reaction with metals :

 $\begin{array}{cccc} 2\text{Na} + 2\text{H}_2\text{O} & \longrightarrow & 2\text{NaOH} + \text{H}_2\\ \text{Ca} + 2\text{H}_2\text{O} & \longrightarrow & \text{Ca(OH)}_2 + \text{H}_2\\ & & \text{Zn} & + & \text{H}_2\text{O} & \longrightarrow & \text{ZnO} + \text{H}_2\\ & & \text{Hot Red} & + & \text{H}_2\text{O} & \longrightarrow & \text{Fe}_3\text{O}_4 + 4\text{H}_2\\ & & \text{Steam} & & & \text{Fe}_3\text{O}_4 + 4\text{H}_2 \end{array}$

Reaction with non-metals :

 $2F_2 + 3H_2O \longrightarrow 3H_2F_2 + O_3$ (Oznonised oxygen)

Action with non-metallic oxide :

$$CO_2 + H_2O \longrightarrow H_2CO_3$$
$$SO_2 + H_2O \longrightarrow H_2SO_3$$

Action with metallic oxide :

 $Na_2O + H_2O \longrightarrow 2NaOH$

Action on metal hydrides :

$$CaH_2 + 2H_2O \longrightarrow Ca(OH)_2 + H_2$$

Rack your Brain

not decompose H₂O?

Why Ag, Au, Hg and Pt metals do

B.P, M.P and Enthalpy of vaporisation is maximum among chalcogen hydrides due to association by H-bond.

Tests of water :

Structure of H₂O :

Oxygen atom

sp³ Hybridisation

H₂O molecules

on first melting

hexagonal arrangement of

(3) On melting of ice the H₂O

molecules shrinks in size (4) ice forms mostly heavy water

19.

Hard and soft water :

- A water is soft if it produces sufficient lather with soap and water is described as being hard. It forms insoluble scum before a lather with soap.
- The hardness of natural water is generally caused by presence of bicarbonates and sulphates of calcium and magnesium but all soluble salts form a scum with soap cause hardness.

Concept Ladder

Hard water can not form leather with soap (C₁₇H₃₅COONa). It forms (C₁₇H₃₅COO)₂Ca in ppt form after reacting with Ca²⁺when react with Ca⁺².

$$Ca_{(aq)}^{2+} + 2C_{17}H_{35}COO_{(aq)}^{-} \longrightarrow (C_{17}H_{35}COO)_{2}Ca$$
 or
 $Mg_{(aq)}^{2+} + 2C_{17}H_{35}COO_{(aq)}^{-} \longrightarrow (C_{17}H_{35}COO)_{2}Mg$

Hardness of water is of two types.
 (A) Temporary hardness
 (B) Permanent hardness

(A) Temporary Hardness :

- Due to presence of Ca(HCO₃)₂ and Mg(HCO₃)₂.
- Rain water dissolves small quantities of CO₂ from atmosphere forming a very dilute solution of carbonic acid.

How temporary hardness of water can be removed?

 $CO_2 + H_2O \longrightarrow H_2CO_3$ (Carbonic acid) $CaCO_3 + H_2CO_3 \longrightarrow Ca(HCO_3)_2$ (Calcium bi-carbonate)

 Temporary hardness is easily removed by boiling.

$$Mg(HCO_3)_2 \xrightarrow{\text{Boil}} MgCO_3 \downarrow + H_2O + CO_2 \uparrow$$

 Temporary hardness is also removed by Clark's process which involves the addition of slaked lime [Ca(OH)₂].
 Ca(HCO₃) + Ca(OH)₂ → 2CaCO₃↓ + 2H₂O

 $Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$

Previous Year's Question

Which method used to remove temporary hardness of water is [NEET]

- (1) Synthetic resins method
- (2) Calgon's method
- (3) Clark's method
- (4) Ion-exchange method

• Only calculated amount of Ca(OH)₂ used because excess of Ca(OH)₂ cause artificial hardness.

2.12 Soft water lathers with soap, but not hard water. Why ?

A.12 Hard water contains Ca and Mg salts. These react with soap to form insoluble Ca and Mg salts of fatty acids. i.e. form scum and not lather.

 $\begin{aligned} 2\mathsf{RCOONa} + \mathsf{Ca}^{2+} &\to \mathsf{(\mathsf{RCOO})}_2 \mathsf{Ca} + 2\mathsf{Na}^+ \\ 2\mathsf{RCOONa} + \mathsf{Mg}^{2+} &\to \mathsf{(\mathsf{RCOO})}_2 \mathsf{Mg} + 2\mathsf{Na}^+ \end{aligned}$

Permanent Hardness :

- Permanent hardness due to presence of sulphates or chloride or both of calcium and magnesium.
- The various method to remove permanent hardness are :
 - (a) Washing soda method
 - (b) Permutit method
 - (c) Calgon method
 - (d) Ion exchange resins method

(a) Washing soda (Na₂CO₃.10H₂O) :

It removes both temporary and permanent hardness.

 $CaCl_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + 2NaCl$ $CaSO_{4} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + Na_{2}SO_{4}$ $Ca(HCO_{3})_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + 2NaHCO_{3}$ Insoluble

Caustic soda/Sodium phosphate can also be used to this purpose.

 $MgCl_{2} + 2NaOH \longrightarrow Mg(OH)_{2} + 2NaCl$ $3MgSO_{4} + 2Na_{3}PO_{4} \longrightarrow Mg_{3}(PO_{4})_{2} + 3Na_{2}SO_{4}$ Insoluble Soluble

Concept Ladder

Permanent hardness is not removed by boiling or addition of slaked lime the substances used to remove the hardness of water are known as water softners.

Previous Year's Question

Which of the following groups of ions makes the water hard? [AIPMT]

(1) Sodium and bicarbonate ions

- (2) Magnesium and chloride ions
- (3) Potassium and sulphate ions
- (4) Ammonium and chloride ions

(b) Permutit :

Permutit is the hydrated silicates of aluminium and sodium (Al₂Na₂Si₂O₈.xH₂O) obtained by fusing sodium carbonate, china clay, silica or quartz. The crystalline sodium aluminosilicates (sodium zeolite) formed exchange sodium ions with calcium and magnesium ions.

Concept Ladder

Permutit method is also termed as zeolite method. It is regenerated by treating NaCl.

$$\begin{split} \text{Na}_{2}\text{Al}_{2}\text{Si}_{2}\text{O}_{8}.\text{xH}_{2}\text{O} + \text{Ca}^{2^{+}} &\longrightarrow \text{CaAl}_{2}\text{Si}_{2}\text{O}_{8}.\text{xH}_{2}\text{O} + 2\text{Na}^{+} \\ \text{or } \text{Na}_{2}\text{Al}_{2}\text{Si}_{2}\text{O}_{8}.\text{xH}_{2}\text{O} + \text{Mg}^{2^{+}} &\longrightarrow \text{MgAl}_{2}\text{Si}_{2}\text{O}_{8}.\text{xH}_{2}\text{O} + 2\text{Na}^{+} \end{split}$$

 These ions can be re-exchanged by treating it with brine (NaCl) solution. CaAl₂Si₂O₈.xH₂O + 2NaCl → Na₂Al₂Si₂O₈.xH₂O + CaCl₂

> Conc. NaCl

Soft water (Contains sodium salts) The exhausted permutit is generally regenerated by percolating through it a solution of
 (1) Cadium ablasida

(1) Sodium chloride(3) Magnesium chloride

- (2) Calcium chloride(4) Barium chloride
- (I) Ballar

A.13 (1)

Factual statement

Q.14 When zeolite, which is hydrated sodium aluminium silicate is treated with hard water, the sodium ions (Na^Å) are exchanged with :
 (1) H^Å ions
 (2) Ca²⁺ ions

(3) SO²⁻, ions

(4) OH⁻ ions

Q.14 (2)

Factual statement

(c) Calgon method :

 complex salt of sodium hexametaphosphate (NaPO₃)₆ and metaphosphoric acid is called as Calgon. It is represented as Na₂[Na₄(PO₃)₂] calcium and magnesium salts present in hard water with Calgon to give complex salts.

Calgon method is specially used in softening of water for boiler use.

 $2CaSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Ca_2(PO_3)_6] + 2Na_2SO_4$ $2MgSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Mg_2(PO_3)_6] + 2Na_2SO_4$

.15 Calgon is an industrial name given to :

- (1) Normal sodium phosphate (2) Sodium meta-aluminate
- (3) Sodium hexametaphosphate (4) Hydrated sodium aluminium silicate

Q.15 (3)

Factual statement

(d) By ion exchange resins :

- Resins are synthetic substances the cation exchange consists of granular insoluble organic acid resin having gaint molecules with sulphonic group or carboxylic groups while the anion exchange contains giant organic molecules with basic groups derived from amines.
- Ion exchange resins remove all soluble minerals from water. The hard water is first passed through a bed of cation exchanger which removes the cations like Na⁺, Mg²⁺, Ca²⁺ and other by exchange with H⁺ ions.

 $2RH + Ca^{2+} / Mg^{2+} / Na^{+} \longrightarrow (R)_{2}Ca + 2H^{+}$ Resin

 H2O coming from cation exchanger is acidic in presence of free hydrogen ions. This H2O is then passed through another bed containing anion exchanger this exchanger removes anions like Cl⁻, SO₄²⁻, SO₄²⁻, NO₃⁻

by exchange with OH⁻ ions.

 $R - NH_{3}OH + Cl^{-} \rightarrow R - NH_{3}Cl + OH^{-}$ Resin

• The OH⁻ ions neutralise the free H⁺ ion produced by the cation exchanger.

 $H^+ + OH^- \longrightarrow H_2O$

- This process gives distilled H₂O can be used in laboratories.
- Cation exchanger is regenerated by action of an acid and anion exchanger by pouring a solution of a suitable sodium through it.

Concept Ladder

Hard water : Water that contain high amount of dissolved minerals or ions such as calcium, magnesium etc.

Soft water: Soft water is surface water that contains very low concentration of ions r minerals, e.g., Rainwater and distilled water.

Previous Year's Question

?

Some statements about heavy water are given below. **[AIPMT]**

- (i) Heavy water is used as a moderator in nuclear reactors.
- (ii) Heavy water is more associated than ordinary water.
- (iii) Heavy water is more effective solvent than ordinary water.

Which of the above statement are correct?

- (1) (i) and (ii)
- (2) (i), (ii) and (iii)
- (3) (ii) and (iii)
- (4) (i) and (iii)

Disadvantages of hard water :

- Not fit for domestic use because it spoils lustre of utensils.
- (2) Not fit for industrial use because it contain Ca^{2+}/Mg^{2+} ions in H₂O.
- (3) Not fit for boiler use because it causes rusting.
- (4) Corrosion
 MgCl₂ + H₂O → Mg(OH)Cl + HCl
 HCl attacks metal surface of boiler and thereby shortens its life by rusting.
- (5) Not fit for washing the clothes because it forms scum.

Degree of hardness :

Equivalent of $CaCO_3 = \frac{Mass of hardness producing su$

Mass of hardness producing substance \times Chemical equivalent of $\text{CaCO}_{\scriptscriptstyle 3}$

Chemical equivalent of hardness producing substance

Mass of hardness producing substance × 50

Chemical equivalent of hardness producing

Explain the process of rusting by attack of HCl?

25.

A sample of hard water contains 1 mg CaCl₂ and 1 mg MgCl₂ per litre. Calculate the hardness of water in terms of CaCO₃ present in per 10⁶ parts of water. (1) 2.5 ppm (2) 1.95 ppm (3) 2.15 ppm (4) 195 ppm

Q.16 (2)

Molecular weight of $CaCl_2 = 111.0 \text{ g}$ Molecular weight of $CaCO_3 = 100 \text{ g}$ Molecular weight of $MgCl_2 = 95.0 \text{ g}$ $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$ $MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 + 2NaCl$ 111.0 \neq CaCl = 100 \neq CaCO

(i) 111.0 g CaCl₂ = 100 g CaCO₃
1 mg CaCl₂ =
$$\frac{100}{111}$$
 mg CaCO₃ = 0.9 mg CaCO₃]

(ii) 95.0 g MgCl₂ = 100 g CaCO₃ 1 mg MgCl₂ = $\frac{100}{95}$ mg CaCO₃ = 1.05 mg CaCO₃ Hardness of CaCO₃ ppm = $\frac{(0.9 + 1.05) \times 10^{-3} \text{ g} \times 10^{6} \text{ mL}}{10^{3} \text{ ml}}$

= 1.95 ppm

2.17 Find the degree of hardness of a sample of water containing 12 mg of MgSO₄ (Molecular Mass 12) per kg of water.

 Q.17 12 mg of MgSO₄ is present in 10³ g of water. Thus, 10⁶ g of water contains = 12000 mg of MgSO₄ 120 g MgSO₄ ⁹ 100 g of CaCO₃
 So, 12000 mg of MgSO₄ = 100/120 × 12000/1000 = 10 g CaCO₃

Hardness of water = 10 ppm.

Hydrogen peroxide H_2O_2 :

H₂O₂ traces occurs in air, rain, snow some natural water and juices of certain plants.

Rack your Brain

In some tooth pastes hydrogen peroxide is used. What is role of H_2O_2 in it?

Structure of H_2O_2 :

Preparation :

$$Na_{2}O_{2} + 2H_{2}O_{Coldwater} \longrightarrow 2NaOH + H_{2}O_{2}$$

$$Na_{2}O_{2} + H_{2}SO_{4} \longrightarrow Na_{2}SO_{4} + H_{2}O_{2}$$

$$BaO_{2} \cdot 8H_{2}O + H_{2}SO_{4} \xrightarrow{O^{\circ}C} BaSO_{4} + H_{2}O_{2} + 8H_{2}O_{2}$$

- The use of H₂SO₄ has a disadvantage as it catalyses the decomposition of H₂O₂.
- In place of sulphuric acid weak acids like H₃PO₄, H₂CO₃ acids are preferred.

$$3BaO_2 + 2H_3PO_4 \longrightarrow Ba_3(PO_4)_2 + 3H_2O_2$$

Merck's Process :

$$BaO_2 + CO_2 + H_2O \longrightarrow BaCO_3 + H_2O_2$$

 $\rm H_{2}O_{2}$ can be obtained by passing a current of $\rm CO_{2}$ through a cold pasty solution of barium peroxide in H_2O.

By oxidation of 2-Butylanthraquinol

2-Butylanthraquinol

By oxidation of isopropyl alcohol :

$$CH_{3} - CH - CH_{3} + O_{2} \longrightarrow CH_{3} - CH_{3} - CH_{3} + H_{2}O_{2}$$

Electrolytic Process :

 In this process, the electrolysis of 50% H₂SO₄ is carried out at low temperature using platinum electrodes and a current of high density. Peroxy disulphuric acid is formed.

 $2H_2SO_4 \longrightarrow 2H^+ + 2HSO_4^-$

 $2HSO_4^- \longrightarrow H_2S_2O_8 + 2e^-$ At anode

Again $H_2S_2O_8 + 2H_2O \longrightarrow 2H_2SO_4 + H_2O_2$ (30%)

Properties of H₂**O**₂:

- Pure H₂O₂ syrupy liquid, colourless, odourless, specific gravity 1.45 at 0°C.
- Soluble in H_2O , ether and alcohol, bitter taste, injurious to skin, boils at 152°C, freezes at -0.89°C, begain to decompose on boiling, shows hydrogen bonding, having dipole movement (μ) = 2.1 D

Chemical properties :

- 1. Decomposition :
- Pure hydrogen peroxide is an unstable liquid

Concept Ladder

Peroxide and Superoxide form H_2O_2 with H_2O , dil.HCl or dil. H_2SO_4 .

Which compound is formed when H_2O_2 is react with dil. H_2SO_4 ?

and decomposes into water and oxygen on long standing or heating.

$$2H_2O_2 \longrightarrow 2H_2O + O_2; \Delta H = -196.0 \text{ kJ}$$

It is an example of auto-oxidation and auto-reduction.

• The decomposition is further accelerated by the presence of certain metal ions e.g. Fe²⁺, metal powders (Co, Au, Ag, Pt etc.), and metal oxides (e.g. MnO₂). Even carbon, rough surfaces and light also catalyse its decomposition.

2. Acidic Nature :

- Pure hydrogen peroxide turns blue litmus red but its dilute solution is neutral to litmus.
- Its dissociation constant is 1.55 × 10⁻¹² at 293 K which is only slightly higher than that of water (1.0 × 10⁻¹²).
- Thus, hydrogen peroxide is only a slightly stronger acid than water.

$$2$$
NaOH + H_2O_2 \longrightarrow Na $_2O_2$ + $2H_2O_3$
Sodium
Hydroperoxide

NaOH +
$$H_2O_2 \longrightarrow NaHO_2 + H_2O_3$$

Sodium
Peroxide

 $Ba(OH)_2 + H_2O_2 \rightarrow BaO_2 + 2H_2O$

3. Oxidising and reducing character :

- H₂O₂ behaves as an oxidising as well as a reducing agent in both acidic and alkaline solutions.
- (a) Oxidising character : Hydrogen peroxide acts as an oxidising agent both in acidic as well as in alkaline medium.

In acidic medium: $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ In Basic Medium: $H_2O_2 + 2e^- \longrightarrow 2OH^-$

Previous Year's Question

[AIPMT]

Which of the following is the true

structure of
$$H_2O_2$$
?
(1) $H - O - O - H$
(2) $\begin{array}{c} H \\ - O \\ - O \\ H \\ H \end{array}$
(3) $\begin{array}{c} H \\ - O = O \\ - O \\ - H \\ - O \end{array}$
(4) $\begin{array}{c} O = O \\ - O \end{array}$

29.

(i) It oxidises acidified ferrous sulphate to ferric sulphate :

 $2FeSO_4 + H_2SO_4 + H_2O_2 \longrightarrow Fe_2(SO_4)_3 + 2H_2O_2$

- It oxidises acidified potassium ferrocyanide (ii) to potassium ferricyanide : $2K_4[Fe(CN)_6] + H_2SO_4 + H_2O_2 \longrightarrow 2K_3[Fe(CN)_6] + K_2SO_4 + 2H_2O_2$
- It liberates iodine form acidified potassium (iii) iodide solution : $2KI + H_2SO_4 + H_2O_2 \longrightarrow K_2SO_4 + 2H_2O_1 + I_2$

(iv) Hydrogen peroxide oxidses ice-cold

acidified potassium dichromate solution (containing ether) to chromium pentoxide which dissolves in ether producing a blue colouration. $K_2 Cr_2 O_7 + H_2 SO_4$

$$O_4 + 4H_2O_2 \longrightarrow K_2SO_4 + 2CrO_5 + 5H_2O_5$$

- (vii) It oxidies arsenites to arsenates respectively. $Na_3AsO_3 + H_2O_2 \rightarrow Na_3AsO_4 + H_2O_2$
- (viii) It oxidises manganese salts to manganese dioxide in alkaline medium.

 $MnSO_4 + H_2O_2 + 2NaOH \longrightarrow Na_2SO_4 + MnO_2 + 2H_2O_2$

(ix) It oxidises chromium salts to chromates in alkaline medium. $Cr_2(SO_4)_3 + 3H_2O_2 + 10NaOH \longrightarrow 2Na_2CrO_4 + 3Na_2SO_4 + 8H_2O_2$

The strucutre of H_2O_2 is **[AIPMT]**

(1) Spherical

Previous Year's Question

- (2) Non-planar
- (3) Planar
- (4) Linear

(x) It oxidises formaldehyde to formic acid HCHO + $H_2O_2 \longrightarrow HCOOH + H_2O$

(xi) It oxidises benzene to phenol $C_6H_6 + H_2O_2 \longrightarrow C_6H_5OH + H_2O$

(xii) It oxidises mercury to mercuric oxide in acidic medium

 $Hg + H_2O \xrightarrow{H_2SO_4(dil.)} HgO + H_2O$

(b) Reducing character : In presence of strong oxidising agents, hydrogen peroxide behaves as a reducing agent both in acidic as well as alkaline medium.

$$H_2O_2$$
 + [O] \rightarrow H_2O + O_2
From oxidising agent

Acidic medium $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$ Alkaline medium $H_2O_2 + 2OH^- \rightarrow 2H_2O + O_2$ + $2e^-$

 (i) It reduces a cidified potassium permanganate solution. As a result of this reaction, the pink colour of KMnO₄ disappears.

 $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$

(ii) It reduces acidified potassium dichromate solution. As a result of this reaction, the orange colour of $K_2Cr_2O_7$ changes to green due to the formation of chromium salt.

 $K_2 Cr_2 O_7 + 4H_2 SO_4 + 3H_2 O_2 \longrightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + 7H_2 O + 3O_2$

(iii) It reduces manganese dioxide to manganese sulphate in presence of dil. H₂SO₄.

$$MnO_2 + H_2SO_4 + H_2O_2 \longrightarrow MnSO_4 + 2H_2O + O_2$$

- (iv) It reduces ozone to dioxygen. $H_2O_2 + O_3 \longrightarrow H_2O + 2O_2$
- (v) Chlorine and bromine are reduced to HCl and HBr respectively. This property is called Antichlor.

Previous	Year's	Question	
		£	

bond angle in H ₂ O ₂
[AIPMT]
(2) 109°28'
(4) 97°

 $H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$ and $H_2O_2 + Br_2 \rightarrow 2HBr + O_2$

(vi) It reduces alkaline potassium ferricyanide to potassium ferrocyanide

 $2K_{3}[Fe(CN)_{6}] + 2KOH + H_{2}O_{2} \longrightarrow 2K_{4}[Fe(CN)_{6}] + 2H_{2}O + O_{2}$

- (vii) It reduces metal oxides to metals, i.e., silver oxide to silver in the alkaline medium. $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$
- (viii) It reduces hypohalites to halide.

NaOBr + $H_2O_2 \longrightarrow$ NaBr + H_2O + O_2 CaOCl₂ + $H_2O_2 \longrightarrow$ CaCl₂ + H_2O + O_2

4. Bleaching Action :

• The bleaching action of H₂O₂ is due to the nascent oxygen which liberates on decomposition.

 $H_2O_2 \longrightarrow H_2O + [O]$ (nascent oxygen)

• The nascent oxygen (O) combines with colouring matter which, in turn, gets oxidised. It's used for bleaching of delicate materials like silk, ivory, wool, feather etc.

Colouring matter + [O] −−−→ Colourless matter

5. Addition Reactions :

• Hydrogen peroxide reacts with alkenes to form glycols.

Rack your Brain

Explain how nascent O which is the product of H₂O₂, makes it colourless?

Previous Year's Question

Hydrogen peroxide molecules are [AIPMT]

(1) monoatomic and form X_2^{2-} ions

(2) diatomic and form X⁻ ions

(3) diatomic and form X_2^- ions

(4) monoatomic and form $X^{\scriptscriptstyle\!-}$ ions

Uses of hydrogen peroxide :

- (i) It is used as antichlor (to remove Cl_2) in textile industry to remove excess of chlorine after bleaching operations.
- (ii) It is used in manufacture of many inorganic and organic (sodium perborate, epoxides) compounds.
- (iii) It is used to restore the colour of lead paintings which have blackened due to the action of H₂S present in the air on lead paints.
- (iv) It is used in the laboratory for detecting the presence of chromium, titanium and vanadium salts with which it 'yields peroxides of characteristic colours.
- (v) It is used as an antiseptic under the name perhydrol (30% H_2O_2) for washing wounds, teeth and ears.
- (vi) 93% H₂O₂ solution is used as an oxidant for rocket fuel and as a propellant for torpedoes and submarines.

Concentration of Hydrogen Peroxide Solution :

Hydrogen prepared by any of the above methods is in the form of dilute aqueous solution. Quite often for a large number of reactions, we need a concentrated solution of H₂O₂. It cannot be concentrated simply by distillation since it decomposes much below its boiling point to give H₂O and O₂.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

• Further, the process of decomposition is catalysed by the presence of heavy metal ion impurities, dust and rough surfaces. In view of these difficulties, concentration of H₂O₂ is carried out carefully in a number of stages.

Concept Ladder

H₂O₂ is used for bleaching delicate materials like hair, silk, wool, ivory, textile, wood and paper pulp.

Rack your Brain

Explain how H_2O_2 is used as an antiseptic for woulds?

The reaction of H_2	D_2 with H_2S is
an example of	Reaction.
	[AIPMT]
(1) addition	(2) oxidation
(3) reduction	(4) acidic

Storage of hydrogen peroxide :

The following precautions are taken while storing hydrogen peroxide solution.

- (i) H₂O₂ cannot be stored in glass bottles since rough surface of glass, alkali metal oxides present in it, and exposure to light catalyse its decomposition. Therefore, H₂O₂ is usually stored in coloured paraffin wax coated or Teflon bottles.
- (ii) Negative catalyst such as glycerine, acetanilide, phosphoric acid etc. must also be added to stabilize the H₂O₂.

Strength of hydrogen peroxide solution :

- Strength or concentration of H₂O₂ solution is expressed in the following ways :
- (1) In terms of volume of O₂ gas: The commercial samples of H₂O₂ are marked as '10 volume', '20 volume', '30 volume', etc.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Meaning of 10 volume of O₂.

1 Volume of H_2O_2 on heating gives 10 volumes of O_2 . Or 1 ml of H_2O_2 on heating gives 10 ml of O_2 . Similarly 10 ml of H_2O_2 on heating gives 100 ml of O_2 . Similarly; **10 ml of 20 volume of H_2O_2** on heating gives **20 × 10 = 200 ml of O_2**.

(2) In terms of weight :

50% H_2O_2 solution (w/v) means that 5 g of H_2O_2 is present in 100 mL of solution.

- \therefore 22400 mL of O₂ gas is obtained at NTP from 68 g of H₂O₂.
- : 10 mL of O₂ gas is obtained at NTP from

Concept Ladder Hydrogen peroxide is biochemically formed in human boides and the bodies of other animals but

it is actually toxic to cells.

Rack your Brain

Write the product formed when one mole of H_2O is mixed with $H_2S_2O_8$?

Concept Ladder

H₂O₂ is stored in the vessels of pure aluminium or in stone jars in dark. $\frac{68}{22400}$ × 10 g of H₂O₂ = 0.03035 g of H₂O₂

1 mL of H₂O₂ contains 0.03035 g of H₂O₂ 100 mL of H_2O_2 contains 0.3035 × 100 = 3.035 g of H₂O₂

Hence, concentration of '10 volume' of H_2O_2 solution is 3.035% (w/v) orconcentration or strength of '10 volume' of H₂O₂ solution is $3.035 \times 10 = 30.35 \text{ g L}^{-1}$.

3. In terms of normality: To know the normality, equivalent weight of H₂O₂ should be known, and this can be calculated as follows :

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

 $(2\times34) = 68 g = 32 g$

- 32 parts of weight of O_2 are obtained from • • 68 parts by weight of H_2O_2 .
- 8 parts by weight of O_2 are obtained from ... $\frac{68 \times 8}{32}$ = 17 parts by weight of H₂O₂.
- Equivalent weight of $H_2O_2 = 17$ $1N = 17gL^{-1}$

Normality of 10 volume H₂O₂ solution

$$= \frac{\text{Strength of 10 volume H}_{2}O_{2} \text{ soln in g L}^{-1}}{\text{Equivalent weight of H}_{2}O_{2}} = \frac{30.35}{17} = 1.785 \text{ N}$$

$$2\frac{H_{2}O_{2}}{mol} \longrightarrow 2H_{2}O_{1} + \frac{O_{2}}{1 \text{ mol}}$$

$$2 \text{ mol of H}_{2}O_{2} = 22.4 \text{ L of O}_{2}$$

$$1 \text{ mol of H}_{2}O_{2} = 11.2 \text{ L of O}_{2}$$

$$1M \text{ H}_{2}O_{2} = 11.2 \text{ L of O}_{2}$$

$$1M \text{ H}_{2}O_{2} = 5.6 \text{ L of O}_{2} = 5.6 \text{ volume of O}_{2}$$

$$M \text{ H}_{2}O_{2} = 5.6 \text{ L of O}_{2} = 5.6 \text{ volume of O}_{2}$$

$$H \text{ Volume strength of 1.5 N H}_{2}O_{2} = 5.6 \text{ volume of O}_{2}$$

$$H \text{ Volume strength of 1.5 N H}_{2}O_{2} = 5.6 \text{ volume of O}_{2}$$

Calculate the strength of 10 volume solution of hydrogen peroxide.

Pure H_2O_2 is a syrupy liquid. It is soluble in water, alcohol and ether. It is injurious to skin

35.

[AIPMT]

(2) 8.4 (4) 5.2

- A.18 No fixed position, sometimes placed in IA with alkali metals and sometimes in VIIA (or 17th) group with halogens.
 -)19 Which metals react with H_2O or dilute HCl or dilute H_2SO_4 to evolve hydrogen?
- A.19 Metals having positive oxidation potential values or placed above hydrogen in the electrochemical series evolve hydrogen with water or dilute HCl or dilute H₂SO₄.
 - **Q.21** Why are the melting and boiling points of D₂O are higher than those of ordinary water?
- A.21 D₂O has more molecular mass and greater degree of association than H₂O and thus shows higher m.pt and b.pt.

) 22 Hydrogen peroxide acts as an oxidising agent as well as a reducing agent.

A.22 This is due to the following reaction. Oxidation agent :

 $H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$ (acidic medium)

 $H_2 O_2 + 2e^- \longrightarrow 2OH^-$ (alkaline medium)

Reducing agent:

 $H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^-$

23 Hydrogen forms compounds with elements having atomic numbers: 9, 11, 12 and 17. What are their chemical formulas? Compare their chemical behaviour.

S. No.	Atomic Number	Element	Chemical formula of the hydride
1.	9	F	HF
2.	11	Na	NaH
3.	12	Mg	MgH ₂
4.	17	Cl	HCl

The compounds formed are hydrides of s-and p-block elements. s-block hydrides (NaH and MgH₂) are also known as salt-like or ionic hydrides. These are non-volatile and non-conducting crystalline solids. MgH₂ has covalent polymer structure.

24 Explain why hydrogen peroxide is stored in coloured plastic bottles?

A.24 H_2O_2 decomposes slowly on exposure to light.

 $2H_2O_{2(l)} \longrightarrow 2H_2O_{(l)} + O_{2(g)}$

In the presence of metal surfaces of traces of alkali present in glass bottles, above decomposition reaction is catalysed. So, it is stored in coloured/ plastic bottles in dark. As a stabiliser, urea can be added. Dust also induces explosive decomposition..

0.25 Discuss the importance of heavy water in nuclear reactors.

A.25 D₂O is used as a moderator in nuclear reactors because it slows down fast moving neutrons and therefore helps in controlling nuclear fission process. It has also been used as a tracer compound to study the mechanism of many chemical reactions.

2.26 Ionic hydrides are frequently used to remove traces of water from organic compounds. What is the underlying basis of this process?

A.26 Electrolysis of solutions of ionic hydrides in molten alkalie halides produce hydrogen gas at the anode which confirms the existence of hydride, H- ion.

$$2H^{-} \xrightarrow{Anode} H_{2(g)} + 2e^{-}$$

Since hydrides react explosively with water.

 $NaH_{(s)} + H_2O_{(aq)} \longrightarrow H_{2(g)} + NaOH_{(aq)}$

 H^- is a strong Bronsted base, which has high reactivity with water. The fire so produced can be extinguished by CO_2 as it gets reduced by the hot metal hydride.

27 Why do lakes freeze from wate top towards bottom?

A.27 There are intermolecular hydrogen bonding in H₂O molecules. The density of water is greater than ice. It many be noted that at 4°C water has maximum density. In severe cold the upper layer of the sea water freezes and the heavier water (density more than that of ice) is present below the surface of ice. Due to this sea animals live safely in water.

Chapter Summary

- 1. Laboratory method of preparation of hydrogen (H₂) $Zn + dil.H_2SO_4 \longrightarrow ZnCl_2 + H_2$
- 2. Commercial processes (for manufacture of hydrogen)
 - (i) Bosch process

$$C + H_2O \xrightarrow{\Lambda} \underbrace{CO + H_2O}_{Water gas}$$

- (ii) Lane's process $3Fe + 4H_2O \xrightarrow[A]{\Delta} CO_2 + 2H_2$ Stem 1000K
- (iii) From hydrocarbon Hydrocarbon + $H_2O \xrightarrow[catalyst]{1270K} CO + H_2$
- 3. Uses of H₂
 - (i) Hydrogenation of oil.
 - (ii) haber's process for menufacture of Ammonia.
 - (iii) Liquid O_2 + liquid H_2 —rocket fuel in space research.
 - (iv) 85% He and 15% H_2 is used in filling of balloons.
- Hydrides are compounds of hydrogen with other element.
 Types of Hydrides
 - (i) Ionic or saline or salt like hydrides.
 - (ii) Covalent hydride.
 - (iii) Metallic or interstitial hydride.
 - (iv) Polynuclear hydride.
- 5. Soft and hard water :

Soft warter produces lather with soap and hard water does not.

Types of Hardness of Water

- (i) Temporary hardness
 - (a) Due to bicarbonates of Ca and Mg.
 - (b) Removed by boiling, Clark's method.
- (ii) Permanent hardness
 - (a) Due to soluble chlorides and sulphates of Ca and Mg.
 - (b) Removed by Soda lime method, Ion exchange method.

Heavy water (H,O,) or Oxygenated water: It was discovered by Thennard. 6. (i) Methods of preparation (a) Lab emthod: By action of H₂SO₄ on hydrated barium peroxide (BaO₂.8H₂O) $BaO_2.8H_2O + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2 + 8H_2O_3$ (b) Merck's method $Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$ (c) By electrolysis of 50% H_2SO_4 $2H_2SO_4 \xrightarrow{\text{electricity}} 2H^+ + 2HSO_4^-$ At cathode At anode $2 H^+ + 2 e^- \longrightarrow H_2^{\uparrow}$ $2HSO_{4}^{-} \longrightarrow \underset{\text{Peroxodisulphuric}}{H_{2}S_{2}O_{8}} + 2e^{-}$ $H_2S_2O_8 + 2H_2O \longrightarrow 2H_2SO_4 + H_2O_2$ (b) Properties Acidic in nature ($K_{a} = 1.55 \times 10^{-12}$ at 298k) (i) $H_2O_2 + H_2O \longrightarrow H_3O^+ + HO_2^-$ (ii) Bleaching action of H_2O_2 is due to oxidation $H_2O_2 \longrightarrow H_2O + [O]$ (iii) Strong oxidising agent $H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$ (acidic medium) $H_2 O_2 + OH^- + 2e^- \longrightarrow 3OH^-$ (basic medium) It oxidises (in acidic medium) (a) Kl \longrightarrow I₂ (b) Fe²⁺ \longrightarrow Fe³⁺ (c) $PbS \longrightarrow PbSO_4$ (d) $K_3[Fe(CN)_6] \longrightarrow K_4[Fe(CN)_6]$ (e) $K_2Cr_2O_7 \longrightarrow Cr_2O_5$ (f) Sulphite \longrightarrow Sulphate In basic medium (a) Mn salts \longrightarrow MnO₂ (b) Chromium salts to chromate (c) HCHO → HCOOH

- (iii) Uses of H_2O_2
 - (a) Bleaching of delicate material hair, wool, feather.
 - (b) restoration of colour of lead painting (black PbS $\xrightarrow{H_2O_2}$ white PbSO₄)
 - (c) Perhydrol (trade name of 30% H₂O) used as antiseptic and germicide.
 - (d) As antichlore $(Cl_2 \longrightarrow HCl)$
- (iv) Structure of H_2O_2 Has open book structure
- (v) Strength of H_2O solution
 - (a) When expressed as percentage means% of H_2O_2 in solution w/v.
 - (b) When expressed in volume strength means the volume of $O_2(in L)$ obtained by decomposition of 1 L sample of H_2O_2 .
 - (c) Volume strength of H_2O_2 = Normality × (Equivalent weight of H_2O_2 =17)

(d) Normality of
$$H_2O_2 = \frac{\text{percentage strength}}{\text{Eq. wt. of } H_2O_2} \times 10^{-10}$$

- (vii) Test of H₂O₂
 - (a) Changes black PbS to white PbSO₄.
 - $(b) \quad \begin{array}{c} \mathsf{K_2Cr_2O_7}_{+} \mathsf{H_2O_2} \xrightarrow{} \mathsf{Cr_2O_5} \\ \text{(orange)} \end{array}$