JEE (Advanced) 2022

Paper 1

SECTION 1 (Maximum Marks: 24)

- This section contains **EIGHT (08)** questions.
- The answer to each question is a **NUMERICAL VALUE.**
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 - *Full Marks* : +3 **ONLY** if the correct numerical value is entered;

Zero Marks : 0 In all other cases.

Q.1 2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O₂ at 298 K and 1 atm into HgO(s). During the reaction, temperature increases from 298.0 K to 312.8 K. If heat capacity of the bomb calorimeter and enthalpy of formation of Hg(g) are 20.00 kJ K⁻¹ and 61.32 kJ mol⁻¹ at 298 K, respectively, the calculated standard molar enthalpy of formation of HgO(s) at 298 K is X kJ mol⁻¹. The value of |X| is <u>90.39</u>. Range (89.00-91.00)

[Given: Gas constant $R = 8.3 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$]

Q.2 The reduction potential $(E^0, \text{ in V})$ of $MnO_4^-(aq)/Mn(s)$ is <u>0.77</u>. Range (0.74-0.80)

[Given: $E_{(MnO_{4}(aq)/MnO_{2}(s))}^{0}$ = 1.68 V; $E_{(MnO_{2}(s)/Mn^{2+}(aq))}^{0}$ = 1.21 V; $E_{(Mn^{2+}(aq)/Mn(s))}^{0}$ = -1.03 V]

Q.3 A solution is prepared by mixing 0.01 mol each of H_2CO_3 , NaHCO₃, Na₂CO₃, and NaOH in 100 mL of water. *p*H of the resulting solution is **10.02**. Range (10.00-10.04)

[Given: pK_{a1} and pK_{a2} of H₂CO₃ are 6.37 and 10.32, respectively; log 2 = 0.30]

Q.4 The treatment of an aqueous solution of 3.74 g of $Cu(NO_3)_2$ with excess KI results in a brown solution along with the formation of a precipitate. Passing H₂S through this brown solution gives another precipitate X. The amount of X (in g) is <u>0.32</u>. Range (0.31-0.33)

[Given: Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

Q.5 Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas Q. The amount of CuSO₄ (in g) required to completely consume the gas Q is 2.39 Range (2.37-2.41)

[Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63]

Q.6 Consider the following reaction.

On estimation of bromine in 1.00 g of **R** using Carius method, the amount of AgBr formed (in g) is **1.50**. Range (1.49-1.51)

[Given: Atomic mass of H = 1, C = 12, O = 16, P = 31, Br = 80, Ag = 108]

Q.7 The weight percentage of hydrogen in \mathbf{Q} , formed in the following reaction sequence, is <u>1.31</u>.

Range (1.30-1.32)

 $\begin{array}{c} \hline \\ 1. \text{ NaOH, 623 K, 300 atm} \\ \hline \\ 2. \text{ conc. } \text{H}_2\text{SO}_4 \text{ and then} \\ \text{ conc. } \text{HNO}_3 \end{array} \qquad \textbf{Q} \text{ (major product)}$

[Given: Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, Cl = 35]

Q.8 If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product **D** formed (in g) is <u>136.00</u>. Range (135.80-136.20)

$$HC \equiv CH \xrightarrow{\text{iron tube}} \mathbf{A} \xrightarrow{H_3C} CI \xrightarrow{I. O_2} 2. H_3O^+ CI \xrightarrow{I. O_2} \mathbf{C} \xrightarrow{I. O_2} \overrightarrow{I} \xrightarrow{I. O_2} \mathbf{C} \xrightarrow$$

The yields of **A**, **B**, **C** and **D** are given in parentheses. [Given: Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>: *Full Marks* : +4 **ONLY** if (all) the correct option(s) is(are) chosen; *Partial Marks* : +3 If all the four options are correct but **ONLY** three options are chosen; *Partial Marks* : +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct; *Partial Marks* : +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option; *Zero Marks* : 0 If none of the options is chosen (i.e. the question is unanswered); *Negative Marks* : -2 In all other cases.

- Q.9 For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap of two $2p_z$ orbitals is(are)
 - (A) σ orbital has a total of two nodal planes.
 - (B) σ^* orbital has one node in the *xz*-plane containing the molecular axis.
 - (C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
 - (D) π^* orbital has one node in the *xy*-plane containing the molecular axis.

Answer: A, D

- Q.10 The correct option(s) related to adsorption processes is(are)
 - (A) Chemisorption results in a unimolecular layer.
 - (B) The enthalpy change during physisorption is in the range of 100 to 140 kJ mol⁻¹.
 - (C) Chemisorption is an endothermic process.
 - (D) Lowering the temperature favors physisorption processes.

Answer: A, D

Paper 1

- Q.11 The electrochemical extraction of aluminum from bauxite ore involves
 - (A) the reaction of Al_2O_3 with coke (C) at a temperature > 2500 °C.
 - (B) the neutralization of aluminate solution by passing CO_2 gas to precipitate hydrated alumina $(Al_2O_3 \cdot 3H_2O)$.
 - (C) the dissolution of Al_2O_3 in hot aqueous NaOH.
 - (D) the electrolysis of Al_2O_3 mixed with Na_3AlF_6 to give Al and CO_2 .

Answer: B, C, D

Q.12 The treatment of galena with HNO₃ produces a gas that is

(A) paramagnetic	(B) bent in geometry
(C) an acidic oxide	(D) colorless

```
Answer: A, D
```

Q.13 Considering the reaction sequence given below, the correct statement(s) is(are)

(A) **P** can be reduced to a primary alcohol using NaBH₄.

(B) Treating **P** with conc. NH_4OH solution followed by acidification gives **Q**.

(C) Treating \mathbf{Q} with a solution of NaNO₂ in aq. HCl liberates N₂.

(D) \mathbf{P} is more acidic than CH_3CH_2COOH .

Answer: B, C, D

Q.14 Considering the following reaction sequence,

Answer: A, B, C

SECTION 3 (Maximum Marks: 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+3	ONLY if the option corresponding to the correct combination is chosen;
Zero Marks	:	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	::	-1	In all other cases.

(I)

Q.15 Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_s and k are constants having appropriate units.

under all possible initial concentrations of X (II) rate = $\frac{k[X]}{X_s + [X]}$

rate = $\frac{k[X]}{X_s + [X]}$

where initial concentrations of X are much less than X_s

LIST-I

(III) rate = $\frac{k[X]}{X_s + [X]}$

where initial concentrations of X are much higher than X_s

(IV)
rate =
$$\frac{k[X]^2}{X_s + [X]}$$

where initial concentration of X is much higher than X_s

 Q.16 LIST-I contains compounds and LIST-II contains reactions

LIST-I	LIST-II
$(I) H_2O_2$	(P) Mg(HCO ₃) ₂ + Ca(OH) ₂ \rightarrow
(II) Mg(OH) ₂	(Q) $BaO_2 + H_2SO_4 \rightarrow$
(III) BaCl ₂	(R) $Ca(OH)_2 + MgCl_2 \rightarrow$
(IV) CaCO ₃	(S) $BaO_2 + HCl \rightarrow$
	(T) $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow$

Match each compound in LIST-I with its formation reaction(s) in LIST-II, and choose the correct option

Q.17 LIST-I contains metal species and LIST-II contains their properties.

LIST-I	LIST-II
(I) $[Cr(CN)_{6}]^{4-}$	(P) t_{2g} orbitals contain 4 electrons
(II) $[\operatorname{RuCl}_6]^{2^-}$	(Q) μ (spin-only) = 4.9 BM
(III) $[Cr(H_2O)_6]^{2+}$	(R) low spin complex ion
(IV) $[Fe(H_2O)_6]^{2+}$	(S) metal ion in 4+ oxidation state
	(T) d^4 species

[Given: Atomic number of Cr = 24, Ru = 44, Fe = 26]

Match each metal species in LIST-I with their properties in LIST-II, and choose the correct option

 $\begin{array}{l} (A) \ I \rightarrow R, \ T; \ II \rightarrow P, \ S; \ III \rightarrow Q, \ T; \ IV \rightarrow P, \ Q \\ (B) \ I \rightarrow R, \ S; \ II \rightarrow P, \ T; \ III \rightarrow P, \ Q; \ IV \rightarrow Q, \ T \\ (C) \ I \rightarrow P, \ R; \ II \rightarrow R, \ S; \ III \rightarrow R, \ T; \ IV \rightarrow P, \ T \\ (D) \ I \rightarrow Q, \ T; \ II \rightarrow S, \ T; \ III \rightarrow P, \ T; \ IV \rightarrow Q, \ R \end{array}$

Answer: A

Q.18 Match the compounds in LIST-I with the observations in LIST-II, and choose the correct option.

LIST-I (I) Aniline	LIST-II (P) Sodium fusion extract of the compound on boiling with FeSO ₄ , followed by acidification with conc. H ₂ SO ₄ , gives Prussian blue color.
(II) o-Cresol	(Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.
(III) Cysteine	(R) Addition of the compound to a saturated solution of NaHCO ₃ results in effervescence.
(IV) Caprolactam	(S) The compound reacts with bromine water to give a white precipitate.
	(T) Treating the compound with neutral FeCl_3 solution produces violet color.
(A) $I \rightarrow P,Q; II \rightarrow S; III \rightarrow Q,R; IV \rightarrow P$	

(A) $I \rightarrow P,Q; II \rightarrow S; III \rightarrow Q,R; IV \rightarrow P$ (B) $I \rightarrow P; II \rightarrow R,S; III \rightarrow R; IV \rightarrow Q,S$ (C) $I \rightarrow Q,S; II \rightarrow P,T; III \rightarrow P; IV \rightarrow S$ (D) $I \rightarrow P,S; II \rightarrow T; III \rightarrow Q,R; IV \rightarrow P$

Answer: D

END OF THE QUESTION PAPER