


Linear momentum P = mv

mv

 $F\Delta t = mv - mu$

Impulse

 $W = \frac{dQ}{dt}$ angular acceleration

torque

 $\tau = I \propto = \frac{d}{dt}(Iw)$

work - done

 $W = \tau Q$ rotational K.E

Power $P = \tau W$,

angular momentum L = Iwangular Impulse $\tau pt = Iw_f - Iw$

		JAT.		NA
Z	Body	Axis	Figure	7
(1)	Thin circular ring, radius <i>R</i>	Perpendicular to plane, at centre	O €	M R ²
(2)	Thin circular ring, radius <i>R</i>	Diameter	.	<i>M R</i> ² / 2
(3)	Thin rod, lenght <i>L</i>	Perpendicular to rod, at mid point		<i>M L² /</i> 12
(4)	Circular disc, radius <i>R</i>	Perpendicular to disc at centre	Ĵ -]	M R ² / 2
(5)	Circular disc, radius <i>R</i>	Diameter		$MR^2/4$
(6)	Hollow cylinder, radius <i>R</i>	Axis of cylinder		MR ₂
(7)	Solid cylinder, radius <i>R</i>	Axis of cylinder		<i>M R² / 2</i>
(8)	Solid cylinder, radius <i>R</i>	Diameter		2 <i>M R</i> ² / 5
(9)	Hollow sphere, radius R	Diameter		$\frac{2}{3}mR^2$

(4) Time taken to reach the bottom of the inclined plane is.

 $\frac{2n\left(1+\frac{K^2}{R^2}\right)}{2}$

 $\left(\begin{array}{c} 0 \end{array} \right)$

MOTION OF SYSTEM OF PARTICLES & RIGID BODY

Pure Rotational Motion :-

- (1) Since distance between two particles of a rigid body remains constant. So the relative motion of one particle w.r.t other particle is circular motion.
- (2) ANGULAR VELOCITY OF ALL THE PARTICLES about a given point of a Rigid body is same

S = RQ, |V| = Rw; (3) If α = Constant (angular acceleration).

),
$$W_f = w_i + \alpha t$$
,
 $Q_f = w_i t + \frac{1}{2} \alpha t^2 w_f^2 =$
 $w_i^2 + 2\alpha\theta, \theta = \left(\frac{w_i + w_f}{2}\right) t$
 $\theta = w_f t - \frac{1}{2} \alpha t^2 \rightarrow K.E_{rolling} = \frac{1}{2} mv^2 + \frac{1}{2} lw^2$,
 $\frac{1}{2} mv^2 + \frac{1}{2} mk^2 \left(\frac{V^2}{r^2}\right)$
 $\frac{1}{2} mv^2 \left(1 + \frac{K^2}{R^2}\right)$

Combined Rotation + translation Motion (CRTM):-

$$\overrightarrow{V}_{CRTM} = \overrightarrow{V}_{pure \ rotation} + \overrightarrow{V}_{translational}$$

 $\mathbf{a}_{\text{CRTM}} = \mathbf{a}_{\text{pure rotation}} + \mathbf{a}_{\text{translational}}$

DYNAMICS OF CRTM

for analysing its motion we apply two equation

$$\begin{split} \sum \vec{\tau}_{\text{ext}} &= \vec{\text{Ma}}_{\text{cm}} \\ \sum \vec{\tau}_{\text{ext}} &= \vec{\text{I}} \vec{\alpha} = \vec{\text{r}} \times \vec{\text{F}}_{\text{ext}} \end{split}$$

Newton's laws of motion is valid in inertial frame.

To apply second equation of Newton about Non - inertial Point, PSeudo – force is applied at Com of body Σ of pseudo force is also taken into account.

 \rightarrow K.E_{CRTM} = K.E_{rotation} + K.E_{translation};

K.E =
$$\frac{1}{2}I_{cmw^2} + \frac{1}{2}MV_{cm}^2$$
;
K.E = $\frac{1}{2}MK^2w^2 + \frac{1}{2}MV_{cm}^2$

ightarrow angular momentum of Rigid body per forming CRTM: Pure Rotational as a Rigid body about C.O.M: Translation as a particle

(1) ROLLING ON INCLINED PLANE

 $(E_{\kappa})_r$ = rotational K.E $(E_{\kappa})_t$ = translation K.E

(a) for solid sphere, $(E_k)_r = 40\%$ of $(E_k)_t$,

(b) For snell $(E_k)_r = 66\%$ of $(E_k)_t$,

(c) For disc, $(E_k)_r = 50\%$ of $(E_k)_t$ of $(E_k)_t$, (d) For ring, $(E_k)_r = (E_k)_t$

(2) VELOCITY AT LOWEST POINT

$$V = \sqrt{\frac{2gh}{1 + \frac{K^2}{R^2}}}$$

K²

(3) ACCELERATION ALONG INCLINED PLANE

