Mechanical wave

Non-Mechanical wave

Matter wave

waves which do not

and to transfer of

energy. Example:-

Electromagnetic

waves (X – rays.

adio waves)

require any material

medium for propagation

waves associated with Constituents of matter i.e. electrons. Protons. NEUTRONS. Atoms and molecular are called matter waves

wave which require a material medium for propagation and to transfer energy continually are said to be mechanised wave. Example:- (1) water waves. (2) SOUND WOVES

Longitudinal waves

waves in which the direction of disturbance of wave particle is along the direction of propagation of wave.

Transverse waves

IN which the direction of disturbance is perpendicular to the direction of propagation of wave.

Stationary wave

which seems to be at rest due to superposition of two waves having same amplitude, wavelength travelling in Straight line in opposite direction.

Progressive wave

which travels continuously in a medium in same direction without changing its amplitude. Example: (1) longitudinal wave, (2) Transverse waves

DISPLACEMENT RELATION IN A PROGRESSIVE WAVE

Progressive wave travels continuously in a medium without changing its amplitude.

AMPLITUDE

Amplitude is maximum displacement of constituident particles from their equilibrium PoSition.

Time Period

Time to Complete one revolution of oscillation. - S.I. UNIT is sec (&)

wavelength

minimum distance between two points having same phase. - S.I. unit = Met<mark>er</mark> (m)

Frequency

Frequency is number of oscillations per second. $f = \frac{n}{T} = \frac{\omega}{2\pi}$ N = NO. OF OSCILLATIONS w = Angular Frequency.- Unit = Hertz (Hz)

ANGULAR FREQUENCY

ANGULAR FREQUENCY IS angular displacement of any element per unit time $\omega = \frac{2\pi}{T} = 2\pi f$

Unit = rad/Sec.

wavenumber

wavenumber is defined as 2π times the number of waves per unit length $K = \frac{2\pi}{\lambda}$

- S.I. Unit = rad/m

WAVE (SOUND WAVE)

B = BULK MODULUS. I = density. For Solids.

an isothermal process.

is an isothermal process

MA

or more waves to produce a new wave. 9 (x.t) = 2a cos $\frac{\varphi}{2}$ sin (kx – wt + **ANEL =** $2a\cos^{\psi}$ wave)

Relation between particle velocity and wave velocity $\upsilon_{n} = aw \cos(wt - kx + \phi)$

NP

 $\left[\mathbf{O} \right]$

NSFEL

ND

 $\left(\begin{array}{c} 0 \end{array} \right)$

https://discord.io/anandmani

t.me/anandmani001