MAGNETIC FLUX

It is defined as the number of magnetic field lines passing through a surface normally.

LENZ'S LAW

This Law States that Polarity of induced emf is such that it tends to produce a current which apposes the change in INduced current: magnetic flux that produced it. $i = 1 \left(-d\phi_{B} \right)$ R (N)(S)INduce charge: ← V S- $\mathbf{q} = (\Delta \phi_{\mathbf{B}})$ (S)(N)METHODS TO CHANGE IN MAGNETIC FLUX $\mathbf{E} = \tilde{\mathbf{I}} (\mathbf{d} \mathbf{I} \times \mathbf{V}) \cdot \mathbf{B}$. Magnetic flux can be increased by increasing the strength of magnetic field and Vice - versa. IN B . The magnetic flux can be NP increased by increasing the x x × area of coil and vice - versa. × × . The magnetic flux can vary from maximum to. minimum value for variation in θ . . The magnetic flux can be increased by increasing the NUMBER OF COILS. CURRENT DECAY ENERGY STORED IN AN INDUCTOR COIL -0000-R 000 -/////-• $| = |_{e^{-\frac{1}{2}}}$

when a conductor moves in a magnetic field it will experience a force and emf is induced in the coil. This emf is know as motional emf.

(O) anand_mani16

t = ∞

t = 0

t = 0

 $t = \lambda$

 $t \rightarrow \infty$

(E/L)

t = 0

(E/L) – line

Exp. Decay

 $t \rightarrow \infty$

I₀ – line

 $t = \lambda$

Exp. Decay

Е

• U = $\frac{1}{2}$ Ll²

https://www.anandmani.com/